what is the arithematic progression of 333
Answers
Answered by
1
Answer:
Let the sum of the given sequence be S_{n}S
n
So, S_{n}S
n
= 3 + 33 + 333 + .... + n
S_{n}S
n
= 3( 1 + 11 + 111 + .... upto\:n\:terms )
Divide and multiply by 9.
S_{n}=\dfrac{3}{9}\bigg( 9 + 99 + 999 + ...\mathsf{upto\:n\:terms}\:\bigg)S
n
=
9
3
(9+99+999+...uptonterms)
S_{n} = \dfrac{1}{3}\bigg[ ( 10 - 1 ) + ( 100 - 1 ) + ( 100 - 1 ) + .... + \mathsf{upto\:n\:terms}\bigg]S
n
=
3
1
[(10−1)+(100−1)+(100−1)+....+uptonterms]
ambitious70:
Just tell me the correct answer
Similar questions