Math, asked by sahebghosh817, 11 months ago

what is the average of all the multiple of 9 lying between 120 and 280?​

Answers

Answered by Anonymous
1

❏ ForMuLaS Used

if in an A.P. series a be the first term and d be the common difference then ,

(1) The n'th term is given by the formula .

\sf\longrightarrow\boxed{ a_n=a+(n-1)d   }

(2)Sum of n number of terms ,

\sf\longrightarrow\boxed{ S_n=\frac{n[2a+(n-1)d]}{2}   }

Now

Average formula,

\sf\longrightarrow\boxed{ AVG.=\frac{Sum\: of\: terms}{total \:number\: of \:terms}   }

━━━━━━━━━━━━━━━━━━━━━━━

❚ Let's Solve The Problem ❚

━━━━━━━━━━━━━━━━━━━━━━━

❏ Solution

Q) what is the average of all the multiple of 9 lying between 120 and 280?

ans)

The multiples of 9 that lying between 120 to 280 are,

126,135,144,.......,279

By studying the above A.P series,

first term (a)=126

common difference (d)=9

let, 279 is the n'th term of this A.P. series.

\therefore  a_n=a+(n-1)d

\sf\longrightarrow  279=126+(n-1)9

\sf\longrightarrow  279-126=(n-1)9

\sf\longrightarrow  n=\frac{153}{9}+1

\sf\longrightarrow  n=17+1

\sf\longrightarrow  \boxed{n=18}

sum of 18 terms is ,

\bf\longrightarrow \:S_{18}=\frac{\cancel{18}[2a+(18-1)d]}{\cancel2}

\sf\longrightarrow \:S_{18}=9[2(126)+17(9)]

\sf\longrightarrow \:S_{18}=9[405]

\sf\longrightarrow\boxed{ \:S_{18}=3645}

Now, the average of all the multiple of 9 lying between 120 and 280 is,

\sf\longrightarrow S_{avg}=\frac{S_{18}}{18}

\sf\longrightarrow S_{avg}=\frac{\cancel{3645}}{\cancel{18}}

\sf\longrightarrow \boxed{S_{avg}=202.5}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

#answerwithquality & #BAL

Similar questions