Math, asked by GeetaPargaonkar, 11 months ago

what is the average rain of the week if the average rain of the first six days increased by 5mm due to 60 mm rain on the seven day ?​

Answers

Answered by ananya05shahi
8

Answer:

30mm

Step-by-step explanation:

Attachments:
Answered by sanjeevk28012
4

The Average rain of the week is 30 mm .

Step-by-step explanation:

Given as :

The measurement of rain on seventh day = 60 mm

Let The average rain of the week = A

According to question

Average rain of six days = \dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{6}

Average rain of seven days = \dfrac{x_1+x_2+x_3+x_4+x_5+x_6+x_7}{7}

Now, Since, Average rain of 6 days increase by 5 mm, when 60 mm rain on seventh days

i.e \dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{6}  +  5  = \dfrac{x_1+x_2+x_3+x_4+x_5+x_6+60}{7}

Or, \dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{6}  + 5 = \dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{7} + \dfrac{60}{7}

Or, \dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{6}  - \dfrac{x_1+x_2+x_3+x_4+x_5+x_6}{7} = \dfrac{60}{7} - 5

Or, ( x_1+x_2+x_3+x_4+x_5+x_6 ) ( \dfrac{1}{6} - \dfrac{1}{7} ) = \dfrac{60-35}{7}

Or,  ( x_1+x_2+x_3+x_4+x_5+x_6 ) ( \dfrac{7-6}{42} ) = \dfrac{25}{7}

Or,  ( x_1+x_2+x_3+x_4+x_5+x_6 ) ( \dfrac{1}{42} )  =  \dfrac{25}{7}

Or, ( x_1+x_2+x_3+x_4+x_5+x_6 )  = \dfrac{25}{7} × 42

i.e x_1+x_2+x_3+x_4+x_5+x_6  = 25 × 6

Or,, x_1+x_2+x_3+x_4+x_5+x_6 = 150                                          .............1

Again

∵   on seventh day , rain measure = x_7 = 60 mm                       ...........2

The average rain of the week = \dfrac{x_1+x_2+x_3+x_4+x_5+x_6+x_7}{7}  

i.e                                           A = \dfrac{150+60}{7}                     ( from 1 and 2 )

Or,                                          A = \dfrac{210}{7}

                                            A = 30 mm

So, The Average rain of the week = A = 30 mm

Hence,  The Average rain of the week is 30 mm . Answer

Similar questions