what is the Black hole?And a brief explanation about the BLACK HOLE THEORY.
Answers
Explanation:
A black hole is a region of spacetime where gravity is so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.
If you jumped into the black hole feet first, the gravitational force on your toes would be much stronger than that pulling on your head. Each bit of your body would also be elongated in a slightly different direction. You would literally end up looking like a piece of spaghetti.
What is black hole theory?
A black hole is a region of spacetime where gravity is so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole.
Most famously, black holes were predicted by Einstein's theory of general relativity, which showed that when a massive star dies, it leaves behind a small, dense remnant core. ... If a black hole passes through a cloud of interstellar matter, for example, it will draw matter inward in a process known as accretion.
Answer:
Black holes are some of the strangest and most fascinating objects in outer space. They're extremely dense, with such strong gravitational attraction that even light cannot escape their grasp if it comes near enough.
Explanation:
Stellar black holes — small but deadly
When a star burns through the last of its fuel, the object may collapse, or fall into itself. For smaller stars (those up to about three times the sun's mass), the new core will become a neutron star or a white dwarf. But when a larger star collapses, it continues to compress and creates a stellar black hole.
Black holes formed by the collapse of individual stars are relatively small, but incredibly dense. One of these objects packs more than three times the mass of the sun into the diameter of a city. This leads to a crazy amount of gravitational force pulling on objects around the object. Stellar black holes then consume the dust and gas from their surrounding galaxies, which keeps them growing in size.
According the Harvard-Smithsonian Center for Astrophysics, "the Milky Way contains a few hundred million" stellar black holes.
Supermassive black holes — the birth of giants
Small black holes populate the universe, but their cousins, supermassive black holes, dominate. These enormous black holes are millions or even billions of times as massive as the sun, but are about the same size in diameter. Such black holes are thought to lie at the center of pretty much every galaxy, including the Milky Way.
Scientists aren't certain how such large black holes spawn. Once these giants have formed, they gather mass from the dust and gas around them, material that is plentiful in the center of galaxies, allowing them to grow to even more enormous sizes.
Supermassive black holes may be the result of hundreds or thousands of tiny black holes that merge together. Large gas clouds could also be responsible, collapsing together and rapidly accreting mass. A third option is the collapse of a stellar cluster, a group of stars all falling together. Fourth, supermassive black holes could arise from large clusters of dark matter. This is a substance that we can observe through its gravitational effect on other objects; however, we don't know what dark matter is composed of because it does not emit light and cannot be directly observed.