Science, asked by saikumarlingala7766, 9 months ago

What is the centre of gravity of a semi circle of diameter 12cm?

Answers

Answered by amitnrw
2

Given : a semi circle of diameter 12 cm

To Find : Center of Gravity

Solution:

Diameter = 12 cm

Radius = 6 cm

Taking center at ( 0 , 0)  and semicircle above x axis

Because of symmetry center of gravity will lie of y axis

\overline{y} = \int\limits^6_0 {\frac{2xy}{A}} \, dy

A = (1/2)πr² =   (1/2)π(6)²  = 18π  cm² ( area of semicircle)

x² + y² = r² =  6²

=> x² = (6² - y²)

=> x = √(36 - y²)

\overline{y}  = \int\limits^6_0 {\frac{2\sqrt{36-y^2} y}{18 \pi}} \, dy

Let assume 36 - y²  = z  

=> -2ydy  = dz

=> 2ydy = -dz  

on substituting  

\int{\frac{-\sqrt{z} }{18 \pi}} \, dz

on integrating

{\dfrac{-z^{\frac{3}{2}} }{\frac{3}{2}.18 \pi}}+c \\{\dfrac{-(36-y^2)^{\frac{3}{2}} }{27 \pi}}+c \\

Applying limits 0 to 6

216/27π

= 8/π  cm

= 2.5465  cm

Hence centre of gravity of a semi circle of diameter 12 cm

will be at a height of 8/π  cm or 2.5465  cm  from the center of Semicircle

Learn  More:

The centre of gravity of an equilateral triangle with each side a, is ...

https://brainly.in/question/6584811

What is the centre of gravity of a semi circle of diameter 12 cm?

https://brainly.in/question/17491617

Attachments:
Answered by nirman95
0

To find:

Centre of mass of a semi-circular ring of diameter 12 cm ?

Calculation:

Let radius of ring be R = 12/2 = 6 cm:

Linear mass density of ring be \lambda

\lambda = \dfrac{m}{\pi R }

= > \dfrac{dm}{dy} = \dfrac{m}{\pi R }

= > dm = \dfrac{m}{\pi R } \times (dy)

= > dm = \dfrac{m}{\pi R } \times (R \: d \theta)

= > dm = \dfrac{m \: d \theta}{\pi }

So, centre of mass :

\displaystyle \: \bar{y} = \dfrac{1}{m} \int \: y \: dm

= > \displaystyle \: \bar{y} = \dfrac{1}{m} \int \: R \cos( \theta)\: dm

= > \displaystyle \: \bar{y} = \dfrac{1}{m} \int \: R \cos( \theta)\: \frac{m \: d\theta}{\pi}

= > \displaystyle \: \bar{y} = \dfrac{1}{\pi} \int \: R \cos( \theta) \: d \theta

= > \displaystyle \: \bar{y} = \dfrac{R}{\pi} \int \: \cos( \theta) \: d \theta

Putting limit ;

= > \displaystyle \: \bar{y} = \dfrac{R}{\pi} \int_{0}^{\pi} \: \cos( \theta) \: d \theta

= > \displaystyle \: \bar{y} = \dfrac{2R}{\pi}

Putting available values:

= > \displaystyle \: \bar{y} = \dfrac{2\times 6}{\pi}

= > \displaystyle \: \bar{y} = \dfrac{12}{\pi}

= > \displaystyle \: \bar{y} = 3.819 cm

So, final answer is:

\boxed{ \red{ \large{ \sf{ \: \bar{y} = 3.819 cm}}}}

Attachments:
Similar questions