Math, asked by madhurisontakke123, 5 months ago

what is the centre of gravity of semicircle of diameter 12cm​

Answers

Answered by vaghanishrey
0

Answer:

Given : a semi circle of diameter 12 cm

To Find : Center of Gravity

Solution:

Diameter = 12 cm

Radius = 6 cm

Taking center at ( 0 , 0) and semicircle above x axis

Because of symmetry center of gravity will lie of y axis

\overline{y} = \int\limits^6_0 {\frac{2xy}{A}} \, dy

y

=

0

6

A

2xy

dy

A = (1/2)πr² = (1/2)π(6)² = 18π cm² ( area of semicircle)

x² + y² = r² = 6²

=> x² = (6² - y²)

=> x = √(36 - y²)

\overline{y} = \int\limits^6_0 {\frac{2\sqrt{36-y^2} y}{18 \pi}} \, dy

y

=

0

6

18π

2

36−y

2

y

dy

Let assume 36 - y² = z

=> -2ydy = dz

=> 2ydy = -dz

on substituting

\int{\frac{-\sqrt{z} }{18 \pi}} \, dz∫

18π

z

dz

on integrating

\begin{gathered}{\dfrac{-z^{\frac{3}{2}} }{\frac{3}{2}.18 \pi}}+c \\{\dfrac{-(36-y^2)^{\frac{3}{2}} }{27 \pi}}+c \\\end{gathered}

2

3

.18π

−z

2

3

+c

27π

−(36−y

2

)

2

3

+c

Applying limits 0 to 6

216/27π

= 8/π cm

= 2.5465 cm

Hence centre of gravity of a semi circle of diameter 12 cm

will be at a height of 8/π cm or 2.5465 cm from the center of Semicircle

Similar questions