Math, asked by mannatmarda06, 18 days ago

what is the centroid of a triangle with the coordinates (-5, 4) (4, -3) (7, 2)​

Answers

Answered by VishnuPriya2801
19

Answer:-

Given vertices of a triangle are ( - 5 , 4) , (4 , - 3) , (7 , 2).

We know that,

Centroid of a triangle with vertices (x₁ , y₁) , (x₂, y₂) , (x₃ , y₃) is :

 \sf \: G(x \: , \: y) =  \bigg( \dfrac{x_1 + x_2 + x_3}{3}  \: \: , \:   \:  \dfrac{y_1 + y_2 + y_3}{3}  \bigg)

Let,

  • x₁ = - 5
  • y₁ = 4
  • x₂ = 4
  • y₂ = - 3
  • x₃ = 7
  • y₃ = 2

Hence,

 \implies \: \sf \: G(x \: , \: y) =  \bigg( \dfrac{ - 5 +  4+ 7}{3}  \: \:  ,\:   \:  \dfrac{4  - 3 + 2}{3}  \bigg) \\  \\  \implies \sf \: G(x \:,  \: y) =  \bigg( \dfrac{6}{3}  \: \:  ,\:   \:  \dfrac{3}{3}  \bigg) \\  \\  \\\implies \boxed{ \sf \: G(x \: , \: y) =  ( 2  \: \:  ,\:   \:  1 ) }

Centroid of the given triangle is (2 , 1).

Some Important Formulae:-

  • Distance between two points:  \sf \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}

  • Area of triangle:  \sf \:  \frac{1}{2}  \begin{vmatrix} \sf \: x_1 - x_2& \sf x_1 - x_3 \\  \\ \sf y_1 - y_2& \sf \: y_1 - y_3 \end{vmatrix}

  • Area of Quadrilateral:  \sf \:  \frac{1}{2}  \begin{vmatrix} \sf \: x_1 - x_3& \sf x_2 - x_4 \\  \\ \sf y_1 - y_3& \sf \: y_2- y_4 \end{vmatrix}

  • Mid point of a line segment : p(x , y) = [ (x₁ + x₂)/2 , (y₁ + y₂)/2 ]

  • Section formula:  \sf \bigg( \dfrac{mx_2 \pm  nx_1}{m  \pm \: n}  \:  \: , \:  \:  \dfrac{my_2 \pm \: ny_1}{m \pm \: n}  \bigg) \:  \:  \: \binom{+  \longrightarrow \: internally}{ -   \longrightarrow \: externally}
Similar questions