Physics, asked by sudhanshankar242004, 9 months ago

what is the change in momentum between the initial and final points of the projectile path,if the range is maximum​

Answers

Answered by nirman95
16

To find:

Change in momentum between the initial and final points of the projectile path,if the range is maximum.

Calculation:

For max range: \theta = 45°

Initial momentum in y axis:

 = m \{v \sin( \theta)  \} \:  \hat{j}

 = m \{v \sin(  {45}^{ \circ} )  \} \:  \hat{j}

 =  \dfrac{mv}{ \sqrt{2} }  \:  \hat{j}

Initial momentum in x axis:

 = m \{v \cos( \theta)  \} \:  \hat{i}

 = m \{v \cos(  {45}^{ \circ} )  \} \:  \hat{i}

 =  \dfrac{mv}{ \sqrt{2} }  \:  \hat{i}

Final momentum in Y axis:

 = m \{v \sin( \theta)  \} \:   (- \hat{j})

 = m \{v \sin(  {45}^{ \circ} )  \} \:   (- \hat{j})

 =  \dfrac{mv}{ \sqrt{2} } \:   (- \hat{j})

Final momentum in x axis:

 = m \{v \cos( \theta)  \} \:  \hat{i}

 = m \{v \cos(  {45}^{ \circ} )  \} \:  \hat{i}

 =  \dfrac{mv}{ \sqrt{2} }  \:  \hat{i}

So, change in momentum

\Delta P = ( \dfrac{mv}{ \sqrt{2} }  -  \dfrac{mv}{ \sqrt{2} } ) \:  \hat{i} + (  -  \dfrac{mv}{ \sqrt{2} }  -  \dfrac{mv}{ \sqrt{2} } ) \:  \hat{j}

 =  > \Delta P = ( 0 ) \:  \hat{i} + (  -  \dfrac{2mv}{ \sqrt{2} }   ) \:  \hat{j}

 =  > \Delta P =   \dfrac{2mv}{ \sqrt{2} }    \:  ( - \hat{j})

=> \Delta P = \sqrt{2}mv (-\hat{j})

So, final answer is:

 \boxed{ \bf{\Delta P =   \sqrt{2}mv    \:  ( - \hat{j})}}

Similar questions