Physics, asked by shubhamg2437, 7 months ago

What is the change in momentum of a car when 10,000 newton force is
applied in 10 seconds

Answers

Answered by Anonymous
5

AnswEr :

  • Force (F) = 10000 N
  • Time (t) = 10s

MomentuM : Momentum is product of mass and velocity. It's denoted by p.

By, 2nd law of Newton we have a equation that,

\\ \longrightarrow \tt{\vec F\ =\ \dfrac{d \vec p}{dt}} \\ \\ \\ \longrightarrow \tt{d \vec p\ =\ \vec F.dt} \\ \\ \\ \longrightarrow \tt{d \vec p\ =\ 10000\ \times\ 10} \\ \\ \\ \longrightarrow \underline{\boxed{\frak{d \vec p\ =\ 100000\ kgms^{-1}}}}

Answered by prince5132
8

GIVEN :-

  • Force , F = 10000 N.
  • Time , t = 10 seconds.

TO FIND :-

  • The change in momentum of a car , ∆p.

SOLUTION :-

As we know that the rate of change in momentum of any object is given by,

 \\ :  \implies \displaystyle \sf \: \Delta p = m(v - u). \\

Now, by using the second law of motion we have,

:  \implies \displaystyle \sf \: F =  \frac{m(v - u)}{t}  \\  \\  \\

:  \implies \displaystyle \sf \:10000 \: kg.ms ^{ - 2}  =  \frac{m(v - u)}{10}  \\  \\  \\

:  \implies \displaystyle \sf \:10000 \: kg.ms ^{ - 2}  \times 10s =m(v - u) \\  \\  \\

:  \implies \displaystyle \sf \:100000 \: kg.ms ^{ - 2 + 1}  =m(v - u) \\  \\  \\

:  \implies \displaystyle \sf \:100000 \: kg.ms ^{ -  1}  =m(v - u) \\  \\  \\

:  \implies \displaystyle \sf \:100000 \: kg.ms ^{ -  1}  =\Delta p  \\  \\  \\

:  \implies  \underline{ \boxed{\displaystyle \sf \: change \: in \: momentum =  100000 \: kg.ms ^{ -  1}}} \\

Similar questions