what is the coefficient of x^15 in the product of (1-x)(1-2^2x)(1-2^3x)(1-2^4x).........(1-2^15x)
Answers
Answered by
1
Answer:
(1−x)(1−2x)(1−2^2x)...........(1−2^15x)=2^(0+1+2+3+....+15)x16 * ((1/x)−1)
((1/2x)−1).......((1/2^15x)−1)
So ,
=2^120x^16[(1−(1/x))⋅(1−(1/2x))⋅(1−(1/2^2x))..........(1−(1/2^15x))]
So ,
=2^120*x^16[1−(1/x)(1+1/2+1/2^2+..........+1/2^15)+.....]
So Coefficient of x^15 in above expression
=−2^120(1+1/2+1/2^2+..........+1/2^15)=−2120[1−(1/2^16)]⋅1/(1/2)
So we get
=−2^121[1−(1/2^16)]=−2^121+2^105=2^105−2^121
Similar questions