what is the complete explanation of special theory of realitivity.
Answers
In physics, special relativity (also known as the special theory of relativity) is the generally accepted and experimentally confirmed physical theory regarding the relationship between space and time. In Albert Einstein's original pedagogical treatment, it is based on two postulates:
the laws of physics are invariant (i.e. identical) in all inertial frames of reference (i.e. non-accelerating frames of reference); and
the speed of light in a vacuum is the same for all observers, regardless of the motion of the light source or observer.
Some of the work of Albert Einstein in special relativity is built on the earlier work by Hendrik Lorentz.
Special relativity was originally proposed by Albert Einstein in a paper published on 26 September 1905 titled "On the Electrodynamics of Moving Bodies".[p 1] The incompatibility of Newtonian mechanics with Maxwell's equations of electromagnetism and, experimentally, the Michelson-Morley null result (and subsequent similar experiments) demonstrated that the historically hypothesized luminiferous aether did not exist. This led to Einstein's development of special relativity, which corrects mechanics to handle situations involving all motions and especially those at a speed close to that of light (known as relativistic velocities). Today, special relativity is proven to be the most accurate model of motion at any speed when gravitational effects are negligible. Even so, the Newtonian model is still valid as a simple and accurate approximation at low velocities (relative to the speed of light), for example, the everyday motions on Earth.
Special relativity has a wide range of consequences. These have been experimentally verified,[1] and include length contraction, time dilation, relativistic mass, mass–energy equivalence, a universal speed limit, the speed of causality and relativity of simultaneity. It has, for example, replaced the conventional notion of an absolute universal time with the notion of a time that is dependent on reference frame and spatial position. Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy, as expressed in the mass–energy equivalence formula E = mc2 (c is the speed of light in a vacuum).