What is the complete factorisation of 32x^8 - 2y^8?
(a) 2(4x^2 + y^2)(4x^2 - y^2)
(c) (4x^2 + y^2)(8x^2 - 2y^2)
(b) 2(2x^2 + y^2)(2x^2 - y^2)(4x^4 + y^4)
(d) (4x + 2y)(2x - y)(4x^2 + y^2)
Answers
Solution :
To factorise :
> 32 x⁸ - 2y⁸
> 2 [ 16 x⁸ - y⁸ ]
> 2 [ ( 4x⁴ )² - ( y⁴ )² ]
> 2 [ 4x⁴ + y⁴ ][ 4x⁴ - y⁴ ]
> 2 [ 4x⁴ + y⁴ ][ ( 2x² )² - ( y² )² ]
> 2 [ 4x⁴ + y⁴ ][ 2x² + y² ][ 2x² - y² ]
Hence , Option ( b) is the correct answer .
_______________________________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
_______________________________________________
What is the complete factorisation of 32x⁸ - 2y⁸ ?
(a) 2(4x² + y²)(4x² - y²)
(b) 2(2x² + y²)(2x² - y²)(4x⁴ + y⁴)
(c) (4x² + y²)(8x² - 2y²)
(d) (4x + 2y)(2x - y)(4x² + y²)