Math, asked by mnmshajahan3893, 1 year ago

What is the complete solution for the equation x(y-z)p+y(z-x)q=z(x-y)

Answers

Answered by incognito22
9

x(y-z) p+y(z-x) q=z(x-y)

xyp-xzp+yzq-yxq=zx-zy

-zx(p+1)+zy(q+1)

Answered by ushmagaur
0

Answer:

The complete solution for x(y-z)p+y(z-x)q=z(x-y) is

∅(x+y+z,xyz) = 0.

Step-by-step explanation:

Consider the partial differential equation as follows:

x(y-z)p+y(z-x)q=z(x-y)

The auxiliary equation is:

\frac{dx}{x(y-z)}= \frac{dy}{y(z-x)}=\frac{dz}{z(x-y)} ...... (1)

Using property, \frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}, we get

\frac{dx+dy+dz}{x(y-z)+y(z-x)+z(x-y)}=\frac{dx+dy+dz}{0}

Rewrite equation (1) as follows:

\frac{\frac{1}{x} dx}{y-z}= \frac{\frac{1}{y}dy}{z-x}=\frac{\frac{1}{z}dz}{x-y}

Again using property, \frac{a}{b}+\frac{c}{d}=\frac{a+c}{b+d}, we get

\frac{\frac{1}{x} dx+\frac{1}{y}dy+\frac{1}{z}dz}{y-z+z-x+x-y}=\frac{\frac{1}{x} dx+\frac{1}{y}dy+\frac{1}{z}dz}{0}

Thus, auxiliary equation (1) becomes,

\frac{dx}{x(y-z)}= \frac{dy}{y(z-x)}=\frac{dz}{z(x-y)}=\frac{dx+dy+dz}{0}=\frac{\frac{1}{x} dx+\frac{1}{y}dy+\frac{1}{z}dz}{0}

   ↑                                           ↑                     ↑

   I                                          II                    III

Solve equation (I) and (II).

\frac{dx}{x(y-z)}=\frac{dx+dy+dz}{0}

dx+dy+dz=0

Integrate both sides.

x+y+z=c_1, where c_1 is integration constant.

Solve equation (I) and (III).

\frac{dx}{x(y-z)}=\frac{\frac{1}{x} dx+\frac{1}{y}dy+\frac{1}{z}dz}{0}

\frac{1}{x} dx+\frac{1}{y}dy+\frac{1}{z}dz=0

Integrate both sides.

logx+logy+logz=logc_2, where c_2 is integration constant.

xyz=c_2

So, ∅(c_1,c_2) = 0 is the solution.

Hence, ∅(x+y+z,xyz) = 0.

Therefore, the complete solution for x(y-z)p+y(z-x)q=z(x-y) is    ∅(x+y+z,xyz) = 0.

#SPJ3

Similar questions