Math, asked by farzanashams2324, 6 hours ago

what is the cube root of 4 17/27 (4 Whole number 17/27​

Answers

Answered by mohitlilhate17
2

Answer:

it help for you I hope you like

Step-by-step explanation:

3√4 17

27

=3√125/27

=5/3 ans.

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: \sqrt[3]{4\dfrac{17}{27} }

\rm \:  =  \:  \sqrt[3]{\dfrac{27 \times 4 + 17}{27} }

\rm \:  =  \:  \sqrt[3]{\dfrac{108 + 17}{27} }

\rm \:  =  \:  \sqrt[3]{\dfrac{125}{27} }

\rm \:  =  \: \dfrac{ \sqrt[3]{125} }{ \sqrt[3]{27} }

Now, to find the cube roots, we use the concept of Method of Prime factorization.

 \purple{\rm :\longmapsto\:Prime \: factorization \: of \: 125}

 \purple{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:125\:\:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:25\:\:\:}} \\\underline{\sf{5}}&\underline{\sf{\:\:5\: \:\:}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

 \purple{\rm :\longmapsto\:Prime \: factorization \: of \: 125 = 5 \times 5 \times 5}

 \red{\rm :\longmapsto\:Prime \: factorization \: of \: 27 }

 \purple{\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{3}}}&{\underline{\sf{\:\:27\:\:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:9\:\:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:3\: \:\:}} \\ \underline{\sf{}}&{\sf{\:\:1\:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}}

 \red{\rm :\longmapsto\:Prime \: factorization \: of \: 27 = 3 \times 3 \times 3 }

Hence, on substituting the values in above expression is

\rm \:  =  \: \dfrac{ \sqrt[3]{5 \times 5 \times 5} }{ \sqrt[3]{3 \times 3 \times 3} }

\rm \:  =  \: \dfrac{5}{3}

Hence,

\rm\implies \:\boxed{\tt{ \:  \: \sqrt[3]{4\dfrac{17}{27} }  \:  =  \:  \frac{5}{3} \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf  \sqrt[3]{x}  \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 1 & \sf 1 \\ \\ \sf 8 & \sf 2 \\ \\ \sf 27 & \sf 3\\ \\ \sf 64 & \sf 4 \\ \\ \sf 125 & \sf 5\\ \\ \sf 216 & \sf 6 \\ \\ \sf 343 & \sf 7\\ \\ \sf 512 & \sf 8 \\ \\ \sf 729 & \sf 9 \end{array}} \\ \end{gathered}

Similar questions