Computer Science, asked by aritrakayal29, 1 month ago

What is the datatype of the following expression? Show the flow line. int a, float b, short s, long g x = a + b*s – g/b;




write accurately I have to type ​

Answers

Answered by llAngelsnowflakesll
2

given

( x - iy) ( 3 + 5i) is the conjugate of -6 -24i

☆to find

find the values of real number x and y

☆ formula

[ i² = -1 ]

☆solution

The conjugate of -6 + 24i.

given, ( x - iy) ( 3 + 5i) = -6 + 24i

\begin{gathered}\longmapsto\pmb \: x - iy = \dfrac{ - 6 + 24i}{3 + 5i} \\ \\ \\\longmapsto\pmb \: x - iy = \dfrac{( - 6 + 24i)(3 - 5i)}{(3 + 5i)(3 - 5i)} \\ \\ \\ \longmapsto\pmb \: x - iy = \frac{ - 18 + 30i + 72i - 120i^{2} }{ {(3)}^{2} - {(5i)}^{2} } \\ \\\\ \end{gathered}

x−iy=

3+5i

−6+24i

x−iy=

(3+5i)(3−5i)

(−6+24i)(3−5i)

x−iy=

(3)

2

−(5i)

2

−18+30i+72i−120i

2

\begin{gathered}\longmapsto\pmb \: x - iy = \dfrac{ - 18 + 102i + 120}{9 - 25i^{2} } \qquad \qquad \red{ \{ {i}^{2} = - 1 \} }\\ \end{gathered}

x−iy=

9−25i

2

−18+102i+120

{i

2

=−1}

\begin{gathered}\longmapsto\pmb \: x - iy = \dfrac{102 + 102i}{9 + 25} \\ \\ \\ \longmapsto\pmb \: x - iy = \frac{102 + 120i}{34} \\ \\ \\ \longmapsto\pmb \: x - iy = \frac{102}{34} + \frac{102i}{34} \\ \\ \\ \longmapsto\pmb \: x - iy = 3 + 3i\end{gathered}

x−iy=

9+25

102+102i

x−iy=

34

102+120i

x−iy=

34

102

+

34

102i

x−iy=3+3i

\qquad \qquad \bigg \{ \boxed{\therefore \: x = 3 \: and \: y = - 3} \bigg \}{

∴x=3andy=−3

}

hence the value of x and y is 3 and -3

Similar questions