Math, asked by aadyas542, 1 month ago

what is the derivation of the quadratic formula?

Answers

Answered by BrainlyFlash
2

Question -

What is the derivation of the quadratic formula?

Solution -

Let the given quadratic equation be ax²+bx+c = 0 , a≠0

 \sf  a {x}^{2}   + bx + c = 0

 \sf   \hookrightarrow a {x}^{2}  + bx  = - c \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (transposing \: the \: constant \: term)

 \sf \hookrightarrow {x}^{2}  +  \dfrac{b}{a} x  =  -  \dfrac{c}{a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   (dividing \: by \: the \: cofficient \: of \:  {x}^{2} )

Adding {\sf {\dfrac{ {b}^{2} }{4 {a}^{2} } }} to both sides to make L.H.S. a perfect square

   \hookrightarrow\sf{x}^{2}  +  \dfrac{b}{a} x +  \dfrac{ {b}^{2} }{4 {a}^{2} }  =  \dfrac{ {b}^{2} }{4 {a}^{2} }  -  \dfrac{c}{a}

 \hookrightarrow \sf  {(x +  \dfrac{b}{2a}) }^{2}  =  \dfrac{ {b}^{2}  - 4ac}{4 {a}^{2} }

 \sf\hookrightarrow  x +  \dfrac{b}{2a}  =  \pm \dfrac{ \sqrt{ {b}^{2}  - 4ac} }{2a}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (taking \: the \: square \: root \: of \: both \: sides)

 \sf\hookrightarrow \: x =  \dfrac{ - b}{2a}  \pm \dfrac{ \sqrt{ {b}^{2} - 4ac } }{2a}

 \sf\hookrightarrow \: x =  \dfrac{ - b \pm  \sqrt{ {b}^{2} - 4ac }  }{2a}

{ \large{ \purple{ \boxed{ \dag \tt \:Hence \: proved \:  \dag}}}}

Similar questions