What is the derivative if this ..... .
lnx +e^x / tanx
Answers
Answered by
4
Answer:
( tan² x + e^x ( tan x - sec² x ) ) / x . tan² x
Step-by-step explanation:
Let :
y = ㏑ x + e^x / tan x
We know :
( e^x )' = e^x
( ㏑ x )' = 1 / x
( tan x )' = sec² x
Diff. w.r.t. x :
= > d y / d x = 1 / x + ( tan x ( e^x )' - e^x ( tan x )' ] / tan² x
= > d y / d x = 1 / x + e^x . tan x - e^x . sec² x ) / tan² x
= > d y / d x = ( tan² x + e^x ( tan x - sec² x ) ) / x . tan² x
Hence we get required answer!
Answered by
1
Step-by-step explanation:
Answer✍️
- ( tan² x + e^x ( tan x - sec² x ) ) / x . tan² x
Let :
- y = ㏑ x + e^x / tan x
We know :
- ( e^x )' = e^x
- ( ㏑ x )' = 1 / x
- ( tan x )' = sec² x
Diff. w.r.t. x :
➡️d y / d x = 1 / x + ( tan x ( e^x )' - e^x ( tan x )' ] / tan² x
➡️d y / d x = 1 / x + e^x . tan x - e^x . sec² x ) / tan² x
➡️d y / d x = ( tan² x + e^x ( tan x - sec² x ) ) / x . tan² x
hope this helps you
Similar questions