What is the derivative of y = ln ( sec ( √ X ) + tan ( √ X ) ) ?
Answers
Answered by
1
Answer:
dy / dx= sec √x / (√2x)
Step-by-step explanation:
y=ln ( sec (√ x ) + tan ( √ x ) ) ?
let √x=t
y= ln ( sec t +tant)
also let z = sect + tan t
y = ln z
dy/dz= 1/z.................(1)
dz/dt =sect tan t +sec² t .....(2)
t = √x
dt / dx =1/2 x(1/2-1)=1/2*1/√x = 1 /√2x......(3)
Now we know that
dy/dx = (dy/dz * dz/dt *dt/dx)
Putting all the values we get
dy/dx = (1/z)( sect tan t +sec² t ) ( 1 /√2x)
=( 1/(sect + tan t) ) ( sect tan t + sec²t) / (√2x)
= { sect (tant sect) / { (√2x)(sect + tan t) }
=sec t /(√2x)
dy / dx= sec √x / (√2x)
Similar questions