Math, asked by gargi3669, 1 year ago

what is the derivative of y=x^e^x​

Answers

Answered by Anonymous
5

Step-by-step explanation:

the given function is

y =  {x}^{ {e}^{x} }

taking log on both the sides

log \: y \:  = log \:  {x}^{ {e}^{x} }

log \: y \:  =  {e}^{x} log \: x

differentiation wrt x

 \frac{1}{y}  \times  \frac{dy}{dx}  =  {e}^{x}  \times  \frac{1}{x}  + logx \:  {e}^{x}

 \frac{dy}{dx}  = y( {e}^{x}  \times  \frac{1}{x}  + log \: x  \times  {e}^{x} )

 \frac{dy}{dx}  = y( {e}^{x} ( \frac{1}{x}  + logx))

put \: y \:  =  {x}^{ {e}^{x} }

 \frac{dy}{dx}  =  {x}^{ {e}^{x} } ( {e}^{x} ( \frac{1}{x}  + log \: x))

Similar questions