Math, asked by deepharmanpandori969, 8 months ago

what is the derivative with respect to x of (x+1)³-x³

Answers

Answered by pulakmath007
0

SOLUTION

TO DETERMINE

The derivative with respect to x

 \displaystyle \sf{ {(x + 1)}^{3} -  {x}^{3}  }

EVALUATION

Let y be given function

Then we have

 \displaystyle \sf{ y = {(x + 1)}^{3} -  {x}^{3}  }

 \displaystyle \sf{ \implies y =  {x}^{ 3}  + 3 .{x}^{2}. 1 + 3.x. {1}^{2}  + 1 -  {x}^{3}  }

 \displaystyle \sf{ \implies y =  {x}^{ 3}  + 3 {x}^{2}  + 3x + 1 -  {x}^{3}  }

 \displaystyle \sf{ \implies y =   3 {x}^{2}  + 3x + 1   }

Differentiating both sides with respect to x we get

 \displaystyle \sf{ \implies  \frac{dy}{dx} =   \frac{d}{dx} ( 3 {x}^{2}  + 3x + 1 )  }

 \displaystyle \sf{ \implies  \frac{dy}{dx} =   \frac{d}{dx} ( 3 {x}^{2} ) + \frac{d}{dx} (3x )+ \frac{d}{dx} (1 )  }

 \displaystyle \sf{ \implies  \frac{dy}{dx} =3   \frac{d}{dx} (  {x}^{2} ) +3 \frac{d}{dx} (x )+ \frac{d}{dx} (1 )  }

 \displaystyle \sf{ \implies  \frac{dy}{dx} =3 .2x + 3.1 + 0 }

 \displaystyle \sf{ \implies  \frac{dy}{dx} =6x + 3  }

 \displaystyle \sf{ \therefore \:  \:  \:   \frac{d}{dx}  \bigg[{(x + 1)}^{3} -  {x}^{3} \bigg] =6x + 3 }

FINAL ANSWER

 \displaystyle \sf{   \frac{d}{dx}  \bigg[{(x + 1)}^{3} -  {x}^{3} \bigg] =6x + 3 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions