Math, asked by narayanarvindpatil, 2 months ago

What is the difference between amounts for 2 years and 3 years for Rs. 500 at 10% compound interest?

1️⃣ ₹.665.50
2️⃣ ₹ 60
3️⃣ ₹ 60.50
4️⃣ ₹ 605​

Answers

Answered by BrainlyHoney
55

Formula of CI and A:-

 {\pmb {\red{CI = P( 1 +  \frac{r}{100} )^n - P }}}

{ \pmb { \red{Amount = P ( 1 + \frac{r}{100} )^n }}}

Given,

 \sf \: P = ₹ 500 \\ \sf R = 10  \: \%

 \sf \: T_1 = 2 \: years

 \sf \: T_2 = 3  \: years

 \rm  \underline\blue{1st Amount = P ( 1 + \frac{r}{100} )^n}

 \implies500 ( 1 + \frac{10}{100} )^2  \\  \\  \implies 500( \frac{100 + 10}{100} ) ^{2}  \\  \\  \implies \: 500( \frac{110}{100} ) ^{2}  \\  \\  \implies \: 5 \cancel{00} \times  \frac{11 \cancel0}{1 \cancel0 \cancel0}  \times  \frac{11 \cancel0}{1 \cancel{00}} \\  \\  \implies5 \times 11 \times 11 \\  \\  \therefore \:  ₹605

 \rm  \underline\blue{2nd Amount = P ( 1 + \frac{r}{100} )^n}

\implies500 ( 1 + \frac{10}{100} )^3  \\  \\  \implies 500( \frac{100 + 10}{100} ) ^{3}  \\  \\  \implies \: 500( \frac{110}{100} ) ^{3}  \\  \\  \implies \: 5 \cancel{00} \times  \frac{11 \cancel0}{1 \cancel0 \cancel0}  \times  \frac{11 \cancel0}{1 \cancel{00}} \:  \times \:  \frac{11 \cancel0}{10 \cancel0}   \\  \\  \implies5 \times 11 \times 11 \times  \frac{11}{10}  \\  \\  \therefore \:  ₹ \frac{6655}{10}  = ₹665.5

Henceforth,

Difference = 2nd Amount - 1st Amount

⟹ ₹ 665.5 - ₹ 605

\therefore ₹60.5

So, Option 3️⃣ ₹60.50 \bf\red{ [Ans]}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Note :-

  • CI = Compound Interest
  • A = Amount

\large \fbox \red {Hope \: it \: helps \: you}

Answered by sheetalladdha
0

Answer:

I don't understand question

Similar questions