Math, asked by steffistephenson123, 4 months ago

What is the difference between C.I and S.I for the sum of 20000 over a 2 year period, if the C.I is
calcuted at 20% p.a and S.I is calculated at 23% p.a?
A. 350
B. 400 C. 8000 D. 9000 E. 5000

Answers

Answered by Smileygirl123
0

Answer :

B. 400 is the correct answer.

Answered by mathdude500
4

Case :- 1 Calculation of Compound Interest

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Principal \:  =  \: Rs \: 20000} \\ &\sf{Rate \:  =  \: 20 \: \% \: per \: annum} \\  &\sf{Time \:  =  \: 2 \: years} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{Compound  \: Interest}  \end{cases}\end{gathered}\end{gathered}

{\large{\bold{\rm{\underline{Using \; formulas}}}}}

{\sf{\star \:  Amount \:  = P(1+ \dfrac{R}{100})^{n}}} \: ⋆

where,

  • P denotes Principal

  • R denotes Rate

  • n denotes time

{\sf{\star CI \: = Amount \: - Principal}} \star

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

☆ Principal, P = Rs 20000

☆ Rate of interest, R = 20 % per annum

☆ Time = 2 years

\tt \:  \longrightarrow \: Amount \:  = P(1+ \dfrac{R}{100})^{n}

\tt \:  \longrightarrow \: Amount \:  = 20000 \times (1+ \dfrac{20}{100})^{2}

\tt \:  \longrightarrow \: Amount \:  = 20000 \times (1+ \dfrac{1}{5})^{2}

\tt \:  \longrightarrow \: Amount \:  = 20000 \times (\dfrac{6}{5})^{2}

\tt \:  \longrightarrow \: Amount \:  = 20000 \times \dfrac{6}{5} \times \dfrac{6}{5}

\tt \:  \longrightarrow \: Amount \:  = \: Rs \:  28800

\tt \:  \longrightarrow \: { CI \: = Amount \: - Principal}

\tt \:  \longrightarrow \: { CI \: = 28800 \: -  \:  20000}

\tt \:  \longrightarrow \: { CI \: = Rs \: 8800 }

─━─━─━─━─━─━─━─━─━─━─━─━─

Case :- 2 Calculation of Simple interest

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{Principal \:  =  \: Rs \: 20000} \\ &\sf{Rate \:  =  \: 23 \: \% \: per \: annum} \\  &\sf{Time \:  =  \: 2 \: years} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{Simple \:  interest}  \end{cases}\end{gathered}\end{gathered}

{\large{\bold{\rm{\underline{Using \; formulas}}}}}

{\sf{\star  \: Simple \: interest \: = \: \dfrac{P \times R \times T}{100}}} \: ⋆

where,

  • P denotes Principal

  • R denotes Rate

  • T denotes time

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

☆ Principal, P = Rs 20000

☆ Rate of interest, R = 23 % per annum

☆ Time = 2 years

\tt \:  \longrightarrow \: Simple \: interest \: = \: \dfrac{P \times R \times T}{100}

\tt \:  \longrightarrow \: Simple \: interest \: = \: \dfrac{20000 \times 23 \times 2}{100}

\tt \:  \longrightarrow \: Simple \: interest \: = \: Rs \: 9200

\tt\implies \:Difference \:  =  \: Rs \: 9200 - Rs8800

\tt\implies \:Difference \:  =  \: Rs \: 400

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Option \:  (b) \:  is  \: correct}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions