Math, asked by khushi35820, 1 month ago

*What is the difference between compound interests for 2 years and 3 years for Rs. 500 at 10% rate compounded annually?*

1️⃣ ₹ 105
2️⃣ ₹60.50
3️⃣ ₹ 505.50
4️⃣ ₹ 165.50​

Answers

Answered by TwilightShine
46

Answer :-

  • Option 2 is correct.

  • The difference between the compound interests is Rs 60.50.

Step-by-step explanation :-

  • Before finding the difference, it's essential for us to find the compound interests for 2 years and 3 years for Rs 500 at 10% rate compounded annually.

  • To find the compound interest, we will first find the amount using a special formula and then use it to find the compound interest.

  • We will find them one by one!

-----------------------------------------------------------

\underline{\underline{\sf To  \: find  \: the  \: CI \:  for  \: 2  \: years :-}}

We know that :-

 \underline{\boxed{\sf Amount = Principal\Bigg(1 +   \dfrac{Rate}{100} \Bigg)^{Time}}}

Here,

  • Principal = Rs 500.
  • Rate = 10%.
  • Time = 2 years.

-------------------

\longmapsto\underline{\mathfrak{Substituting \:  the \:  given  \: values,}}

 \longmapsto \boxed{\tt Amount =500\Bigg(1 +  \dfrac{10}{100} \Bigg)^{2}}

 \longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{1}{1}  +  \dfrac{10}{100} \Bigg)^{2}}

 \longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{1 \times 100 + 10 \times 1}{100} \Bigg)^{2}}

 \longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{100 + 10}{100} \Bigg)^{2}}

 \longmapsto \boxed{\tt Amount = 500 \Bigg(\dfrac{110}{100} \Bigg)^{2}}

\longmapsto \boxed{\tt Amount = 500 \times \dfrac{110}{100}  \times  \dfrac{110}{100}}

\longmapsto \boxed{\tt Amount = 500 \times  \dfrac{11}{10}  \times  \dfrac{11}{10}}

 \longmapsto\boxed{\tt Amount = 500 \times  \dfrac{11 \times 11}{10 \times 10}}

 \longmapsto\boxed{\tt Amount = 500 \times \dfrac{121}{100}}

 \longmapsto\boxed{\tt Amount = 5 \times  \dfrac{121}{1}}

 \longmapsto\boxed{\tt Amount = 5 \times 121}

  \longmapsto\overline{\boxed{\tt Amount = Rs \: 605.}}

-------------------

  • Now, since we know the amount, therefore let's find the compound interest.

We know that :-

 \underline{\boxed{ \sf CI = Amount - Principal}}

Here,

  • Amount = Rs 605.
  • Principal = Rs 500.

Hence,

\boxed{\tt Compound  \: Interest = 605 - 500}

 \overline{\boxed{\tt Compound \:  Interest = Rs \: 105.}}

-----------------------------------------------------------

\underline{\underline{\sf To  \: find  \: the  \: CI \:  for  \: 3  \: years :-}}

As we already know,

 \underline{\boxed{\sf Amount = Principal\Bigg(1 +   \dfrac{Rate}{100} \Bigg)^{Time}}}

Here,

  • Principal = Rs 500.
  • Rate = 10%
  • Time = 3 years.

-------------------

\longmapsto\underline{\mathfrak{Substituting \:  the \:  given  \: values,}}

 \longmapsto\boxed{\tt Amount = 500\Bigg(1 + \dfrac{10}{100} \Bigg)^{3}}

\longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{1}{1}  +  \dfrac{10}{100} \Bigg)^{3}}

\longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{1 \times100 + 10 \times 1 }{100} \Bigg)^{3}}

\longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{100 + 10}{100} \Bigg)^{3}}

\longmapsto\boxed{\tt Amount = 500\Bigg( \dfrac{110}{100}\Bigg) ^{3}}

\longmapsto\boxed{\tt Amount = 500 \times \dfrac{110}{100}  \times  \dfrac{110}{100}  \times  \dfrac{110}{100}}

\longmapsto\boxed{\tt Amount = 500 \times \dfrac{11}{10}  \times  \dfrac{11}{10}  \times  \dfrac{11}{10}}

\longmapsto\boxed{\tt Amount = 500 \times  \dfrac{11 \times 11 \times 11}{10 \times 10 \times 10}}

\longmapsto\boxed{\tt Amount = 500 \times  \dfrac{1331}{1000}}

\longmapsto\boxed{\tt Amount = 5 \times  \dfrac{1331}{10}}

\longmapsto\boxed{\tt Amount = 1 \times  \dfrac{1331}{2}}

\longmapsto\boxed{ \tt Amount = 1 \times 665.5}

 \longmapsto\overline{\boxed{\tt Amount = Rs \: 665.5.}}

-------------------

  • Now, since we know the Amount, therefore let's find the compound interest.

As given above :-

  \underline{\boxed{ \sf CI = Amount - Principal}}

Here,

  • Amount = Rs 665.5.
  • Principal = Rs 500.

Hence,

\boxed{\tt Compound  \: Interest = 665.5 - 500}

 \overline{\boxed{\tt Compound \:  Interest = Rs \: 165.5.}}

-----------------------------------------------------------

  • Finally, let's find the difference now since we know the compound interests for 2 and 3 years for Rs 500 at 10% rate compounded annually.

-------------------

  • Compound interest for 2 years = Rs 105.

  • Compound interest for 3 years = Rs 165.5.

Hence, their difference is :-

  \boxed{\implies \bf165.5 - 105}

  \overline{\boxed{ \implies \bf Rs \: 60.5.}}

------------------

  • We know that in decimals, zeroes after the decimal point has no value. So that means 60.5 and 60.50 have the same value.

  • Thus, the difference is Rs 60.50.

-----------------------------------------------------------


rsagnik437: :meow_wow:
Similar questions