what is the difference between non luminous object and illuminated object
Answers
Answer:
Difference between luminous and non luminous are as follows
Luminous :
The bodies which have light of their own e.g. sun stars, bulb, candle, oil lamp, torch, a lantern.
Non-Luminous :
The bodies-which do not have their own light. E.g. moon, chair, table. When light falls on them, they become visible.
Explanation:
Difference between luminous and non luminous are as follows
Luminous :
The bodies which have light of their own e.g. sun stars, bulb, candle, oil lamp, torch, a lantern.
Non-Luminous :
The bodies-which do not have their own light. E.g. moon, chair, table. When light falls on them, they become visible.
Answer:
hEy!!
Explanation:
The objects that we see can be placed into one of two categories: luminous objects and illuminated objects. Luminous objects are objects that generate their own light. Illuminated objects are objects that are capable of reflecting light to our eyes. The sun is an example of a luminous object, while the moon is an illuminated object. During the day, the sun generates sufficient light to illuminate objects on Earth. The blue skies, the white clouds, the green grass, the colored leaves of fall, the neighbor's house, and the car approaching the intersection are all seen as a result of light from the sun (the luminous object) reflecting off the illuminated objects and traveling to our eyes. Without the light from the luminous objects, these illuminated objects would not be seen. During the evening when the Earth has rotated to a position where the light from the sun can no longer reach our part of the Earth (due to its inability to bend around the spherical shape of the Earth), objects on Earth appear black (or at least so dark that we could say they are nearly black). In the absence of a porch light or a street light, the neighbor's house can no longer be seen; the grass is no longer green, but rather black; the leaves on the trees are dark; and were it not for the headlights of the car, it would not be seen approaching the intersection. Without luminous objects generating light that propagates through space to illuminate non-luminous objects, those non-luminous objects cannot bee seen. Without light, there would be no sight
A common Physics demonstration involves the directing of a laser beam across the room. With the room lights off, the laser is turned on and its beam is directed towards a plane mirror. The presence of the light beam cannot be detected as it travels towards the mirror. Furthermore, the light beam cannot be detected after reflecting off the mirror and traveling through the air towards a wall in the room. The only locations where the presence of the light beam can be detected are at the location where the light beam strikes the mirror and at the location where the light beam strikes a wall. At these two locations, a portion of the light in the beam is reflecting off the objects (the mirror and the wall) and traveling towards the students' eyes. And since the detection of objects is dependent upon light traveling from that object to the eye, these are the only two locations where one can detect the light beam. But in between the laser and the mirror, the light beam cannot be detected. There is nothing present in the region between the laser and the mirror that is capable of reflecting the light of the beam to students' eyes.
But then the phenomenal occurred (as it often does in a Physics class). A mister is used to spray water into the air in the region where the light beam is moving. Small suspended droplets of water are capable of reflecting light from the beam to your eye. It is only due to the presence of the suspended water droplets that the light path from the laser to the mirror could be detected. When light from the laser (a luminous object) strikes the suspended water droplets (the illuminated object), the light is reflected to students' eyes. The path of the light beam can now be seen. With light, there can be sight. But without light, there would be no sight.
None of us generate light in the visible region of the electromagnetic spectrum. We are not brilliant objects (please take no offense) like the sun; rather, we are illuminated objects like the moon. We make our presence visibly known by reflecting light to the eyes of those who look our way. It is only by reflection that we, as well as most of the other objects in our physical world, can be seen. And if reflected light is so essential to sight, then the very nature of light reflection is a worthy topic of study among students of physics. And in this lesson and the several that follow, we will undertake a study of the way light reflects off objects and travels to our eyes in order to allow us to view them.