Math, asked by kishorsalve133, 3 months ago

What is the difference between
simple interest and compound interest
for 2 years at the rate of 5% on
Roo 10oo​

Answers

Answered by Anonymous
19

Appropriate question:

  • What is the difference between simple interest and compound interest for 2 years at the rate of 5% on Rs. 1000

Given:

  • Principal = Rs. 1000
  • Time = 2 years
  • Rate of interest = 5%

To Find:

  • The difference between the simple interest and compound on the sum of money.

Solution:

Now,

  • Let's firstly find the simple interest on the money

We know that,

 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: \dag \bigg[ \bf \: SI =  \dfrac{P \times R \times T}{100}  \bigg]

where,

  • S.I = Simple interest
  • P = Principal
  • R = Rate of interest
  • T =Time

Here,

  • Principal = 1000
  • Rate of interest = 5%
  • Time = 2 years

Substituting we get,

{ : \implies} \tt \: SI =  \frac{p \times t \times r}{100} \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \\ { : \implies} \tt \: SI =  \frac{10 \cancel{00 }\times 5 \times 2}{ \cancel100}  \\  \\  \\ { : \implies} \tt \: SI = 10 \times 5 \times 2 \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} \tt \: SI ={ \blue{ \underline{ \boxed { \frak{ 100}}} \star}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth, the simple interest is rupees 100

Now,

  • Let's find the compound interest on the money

We know,

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \dag \:  \bigg \{ \bf \: A = P(1  + \frac{r}{100} ) {}^{n}  \bigg \}

Where,

  • A = Amount
  • P = Principal
  • R = Rate of interest
  • N = Time

Here,

  • Principal = 1000
  • Rate = 5%
  • Time = 2 years

Substituting we get,

{ : \implies} \bf A = P\bigg[ 1 +  \frac{r}{100}   \bigg]{}^{n}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \bf A = 1000\bigg[ 1 +  \frac{5}{100}   \bigg]{}^{2}   \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { : \implies} \bf A = 1000\bigg[  \frac{100}{100}  +  \frac{5}{100}   \bigg]{}^{2}  \\  \\  \\ { : \implies} \bf A = 1000\bigg[    \frac{105}{100} \bigg]{}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  { : \implies} \bf A =1000  \times  \frac{105}{100}  \times  \frac{105}{100}  \\  \\  \\  { : \implies} \bf A =105 \times  \frac{105}{10}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\   \\ { : \implies} { \pink{ \underline{ \boxed{ \pmb{ \frak{ A =1102.5}}}} \star}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Henceforth the amount is 1102.5

Now,

  • Let's find the compound interest

We know,

 \:  \:  \:  \:  \:  \: \dag \:  \bigg \{ \bf compound \: intrest = \: A  -P \bigg \}

Where,

  • A = Amount
  • P = Principal

Here,

  • Amount = 1,102.5
  • Principal = 1000

Substituting we get,

  • Compound interest = A - P
  • Compound interest = 1,102.5 - 1000
  • Compound interest = Rs. 102.5

Henceforth,

  • The compound interest is Rs. 102.5

Now,

  • Let's find the difference between simple interest and compound interest

Difference,

➱ Compound interest - Simple interest

➱ 102.5 - 100

Rs. 2.5

Hence:

  • The difference between simple interest and compound interest is rupees 2.5
Similar questions