Math, asked by rabinschy03, 2 months ago

What is the difference between simple interest and compound interest at the rate of 3% in 2/5 years of Rs.15000?​

Answers

Answered by rupalichaudhari343
1

Step-by-step explanation:

Principal = Rs. 15,000

Rate = 5% p.a.

Time = 3 Years

\sf{Difference = Compound \: Interest - Simple \: Interest}Difference=CompoundInterest−SimpleInterest

\sf{Diff. = \bigg[P \bigg(1 + \dfrac{r}{100} \bigg)^{t} - 1 \bigg]- \bigg[\dfrac{PRT}{100} } \bigg]Diff.=[P(1+

100

r

)

t

−1]−[

100

PRT

]

\sf{Diff. = \bigg[15000 \bigg(1 + \cancel\dfrac{5}{100} \bigg)^{3} - 1 \bigg]- \bigg[\dfrac{150 \cancel{00} \times 5 \times 3} {\cancel{100}} } \bigg]Diff.=[15000(1+

100

5

)

3

−1]−[

100

150

00

×5×3

]

\sf{Diff. = \bigg[15000 \bigg(1 + \dfrac{1}{20} \bigg)^{3} - 1 \bigg]- \bigg[150 \times 5 \times 3 } \bigg]Diff.=[15000(1+

20

1

)

3

−1]−[150×5×3]

\sf{Diff. = \bigg[15000 \bigg( \dfrac{21}{20} \bigg)^{3} - 1 \bigg]- 2250}Diff.=[15000(

20

21

)

3

−1]−2250

\sf{Diff. = \bigg[15000 \bigg( \dfrac{9261}{8000} - 1\bigg) \bigg]- 2250}Diff.=[15000(

8000

9261

−1)]−2250

\sf{Diff. = \bigg(15000 \times \dfrac{1261}{8000} \bigg) - 2250}Diff.=(15000×

8000

1261

)−2250

\sf{Diff. = Rs.(2364.375 - 2250)}Diff.=Rs.(2364.375−2250)

\sf{Diff. = Rs. \: 114.375}Diff.=Rs.114.375

Similar questions