What is the difference between simple interest and compound interest at the rate of 3% in 2/5 years of Rs.15000?
Answers
Step-by-step explanation:
Principal = Rs. 15,000
Rate = 5% p.a.
Time = 3 Years
\sf{Difference = Compound \: Interest - Simple \: Interest}Difference=CompoundInterest−SimpleInterest
\sf{Diff. = \bigg[P \bigg(1 + \dfrac{r}{100} \bigg)^{t} - 1 \bigg]- \bigg[\dfrac{PRT}{100} } \bigg]Diff.=[P(1+
100
r
)
t
−1]−[
100
PRT
]
\sf{Diff. = \bigg[15000 \bigg(1 + \cancel\dfrac{5}{100} \bigg)^{3} - 1 \bigg]- \bigg[\dfrac{150 \cancel{00} \times 5 \times 3} {\cancel{100}} } \bigg]Diff.=[15000(1+
100
5
)
3
−1]−[
100
150
00
×5×3
]
\sf{Diff. = \bigg[15000 \bigg(1 + \dfrac{1}{20} \bigg)^{3} - 1 \bigg]- \bigg[150 \times 5 \times 3 } \bigg]Diff.=[15000(1+
20
1
)
3
−1]−[150×5×3]
\sf{Diff. = \bigg[15000 \bigg( \dfrac{21}{20} \bigg)^{3} - 1 \bigg]- 2250}Diff.=[15000(
20
21
)
3
−1]−2250
\sf{Diff. = \bigg[15000 \bigg( \dfrac{9261}{8000} - 1\bigg) \bigg]- 2250}Diff.=[15000(
8000
9261
−1)]−2250
\sf{Diff. = \bigg(15000 \times \dfrac{1261}{8000} \bigg) - 2250}Diff.=(15000×
8000
1261
)−2250
\sf{Diff. = Rs.(2364.375 - 2250)}Diff.=Rs.(2364.375−2250)
\sf{Diff. = Rs. \: 114.375}Diff.=Rs.114.375
⠀