Math, asked by rahuldasaxom, 9 months ago

what is the differentiation (or derivative) of
1 / (sinx + cosx)​

Answers

Answered by BrainlyPopularman
7

GIVEN :

A function  \: \:  { \bold{  \dfrac{1}{ \sin(x) +  \cos(x)}}}

TO FIND :

 \:\:\: { \bold { \dfrac{dy}{dx} = ?}}

SOLUTION :

Let the function –

  \\  \implies  { \bold{y =   \dfrac{1}{ \sin(x) +  \cos(x)}}}  \\

• We know that –

  \\  \implies { \bold{ \frac{d \left( \dfrac{u}{v} \right) }{dx}  =   \dfrac{v. \dfrac{du}{dx} - u \dfrac{dv}{dx}}{ {v}^{2} }}}  \\

• So that –

  \\  \implies  { \bold{ \dfrac{dy}{dx}  =   \dfrac{ \{\sin(x) +  \cos(x) \}(0) - (1) \{ \cos(x) -  \sin(x) \}  }{ \{ \sin(x) +  \cos(x) \}^{2} }}}  \\

  \\  \implies  { \bold{ \dfrac{dy}{dx}  =   \dfrac{  - (1) \{ \cos(x) -  \sin(x) \}  }{ \{ \sin(x) +  \cos(x) \}^{2} }}}  \\

  \\  \implies  { \bold{ \dfrac{dy}{dx}  =   \dfrac{ \sin(x)  -  \cos(x) }{ \{ \sin(x) +  \cos(x) \}^{2} }}}  \\

  \\  \implies  { \bold{ \dfrac{dy}{dx}  =   \dfrac{ \sin(x)  -  \cos(x) }{ \sin^{2} (x) +  \cos^{2} (x)  + 2 \sin(x)  \cos(x) }}}  \\

  \\  \implies \large{ \boxed  { \bold{ \dfrac{dy}{dx}  =   \dfrac{ \sin(x)  -  \cos(x) }{ 1 +  \sin(2x)}}}}  \\

▪︎ OTHER USED IDENTITIES :

  \\  { \bold{ (1) \:  \: \dfrac{d( \sin x) }{dx}  =    \cos(x) }}  \\

  \\  { \bold{ (2) \:  \: \dfrac{d( \cos x) }{dx}  = -  \sin(x) }}  \\

  \\  { \bold{ (3) \:  \: \sin^{2} (x)  +  { \cos}^{2}(x) = 1 }}  \\

  \\  { \bold{ (4) \:  \: 2 \sin(x) \cos(x) =  \sin(2x)  }}  \\

Answered by Anonymous
3

Given ,

The function is 1/sin(x) + cos(x)

Differentiating with respect to x , we get

 \sf \mapsto \frac{dy}{dx}  =  \frac{1}{ \sin(x)  +  \cos(x) }  \\  \\\sf \mapsto \frac{dy}{dx}   =  \frac{\sin(x)  +  \cos(x)  \times  \frac{d(1)}{dx}  - 1 \times \frac{d \{\sin(x)  +  \cos(x)  \}}{dx}  }{ ({\sin(x)  +  \cos(x) )}^{2} }  \\  \\  \sf \mapsto \frac{dy}{dx}  =  \frac{  -   \cos(x)   +   \sin(x) }{  { \sin}^{2}(x) +  { \cos}^{2}(x) + 2 \sin(x) \cos(x)  } \\  \\\sf \mapsto  \frac{dy}{dx}  =  \frac{ \sin(x)-   \cos(x)     }{1 + \sin(2x) }

Remmember :

 \sf \mapsto \frac{d(u.v)}{dx}  =  \frac{v \frac{d(u)}{dx} - u \frac{d(v)}{dx}  }{ {(v)}^{2} }  \\  \\\sf \mapsto  \frac{d(Constant)}{dx}  = 0 \\  \\ \sf \mapsto \frac{d \{ \sin(x)  \}}{dx}  =  \cos(x)  \\  \\ \sf \mapsto \frac{d \{ \cos(x)  \}}{dx}  =   - \sin(x) \\  \\ \sf \mapsto { \sin}^{2} (x) +  { \cos}^{2} (x) = 1 \\  \\ \sf \mapsto \sin(2x)  = 2 \sin(x)  \cos(x)

Similar questions