Math, asked by Takeiralynn12, 4 months ago

what is the distance between (3,3) and (5,3)

Answers

Answered by Sen0rita
41

Solution :

Here, given two points

  • (3 , 3)
  • (5 , 3)

i.e.

  • A(3 , 3)
  • B(5 , 3)

As we know that formula for finding distance between two points is

  • √{(x2 - x1)² + (y2 - y1)²}

Let

  • x1 = 3
  • x2 = 5
  • y1 = 3
  • y2 = 3

Put the values in the formula.

  • Now, according to question :

➝ Distance AB = √{(5 - 3)² + (3 - 3)²}

➝ Distance AB = √{(2)² + (0)²}

➝ Distance AB = √{4 + 0}

➝ Distance AB = √4

➝ Distance AB = 2

  • Hence, the distance between the points AB is 2 units.
Answered by SuitableBoy
50

{\huge{\rm{\underline{\underline{Question:-}}}}}

Q) What is the distance between ( 3 , 3 ) and ( 5 , 3 ) ?

 \\

{\huge{\rm{\underline{\underline{Answer\checkmark}}}}}

 \\

\bf{Given}\begin{cases}\sf{Two\;points.}\\ \sf{First\;Point=\bf{(3,3)} }\\ \sf{Second\;Point=\bf{(5,3)}}\end{cases}

 \\

\bf{To\;Find}\begin{cases}\sf{The\;Distance\;between\;these\;two\;points}\end{cases}

 \\

\huge{\underline{\textit{\textbf{Solution :-}}}}

 \\

Let the points be A and B .

i.e.

  • A = (3,3)
  • B = (5,3)

As we are supposed to find the distance between these two points so , we would the Distance Formula (d) .

 \pink{ \star} \:  \boxed{ \sf{d =    \sqrt{ { ({x _{2} }  - x _{1}} {}^{2} ) +  {(y _{2} - y_{2} )}^{2} }}}

Here ,

 \rightarrow \sf \: x _{1}  \: and \: y _{1}  \: are \: x \: and \: y \: coordinates \: of \: point \: A.\\

&

 \rightarrow \sf \:x _{2} \: and \:  y _{2} \: are \: x \: and \: y \: coordinates \: of \: point \: B. \\

So ,

 \bull \:  \sf \: x _{1} = 3 \\  \bull  \:  \sf \: y _{1} = 3

&

 \bull \:  \sf \: x _{2} = 5 \\ \bull \:  \sf \: y _{2} = 3

Put these values in the Distance Formula ..

 \rm \longmapsto \: d =  \sqrt{ {(5 - 3)}^{2}   +  {(3 - 3)}^{2} } \\  \\  \longmapsto \rm \: d =  \sqrt{ {2}^{2} +  {0}^{2}  }  \\  \\  \longmapsto \rm \: d =  \sqrt{4 + 0}  \\  \\  \longmapsto \rm \: d =  \sqrt{4}   \\  \\  \longmapsto \underline{ \boxed{ \rm{ \pink{d = 2}}}}

So ,

The distance between these two points is 2 units .

Similar questions