Math, asked by BillyBobJoe13, 5 months ago

What is the distance between the point (2, 7) and the
point (‒1, 3) in the xy-coordinate plane?
F. √17
G. 4√2
H. 5
J. 5√2
K. 6


prasadrvprasad214: answer 5

Answers

Answered by Asterinn
62

We know that :-

Distance between the two points (a,b) and (c,d) :-

 \underline{ \boxed{ \large \rm \:  \sqrt{ {(c -  a)}^{2}  +  {(d - b)}^{2} } }}

Now , we have to find out distance between points (2, 7) and (‒1, 3).

 \rm \longrightarrow \large  \sqrt{ {( - 1 - 2)}^{2} +  {( 3 - 7)}^{2}  }  \\  \\  \\ \rm \longrightarrow \large  \sqrt{ {( -3)}^{2} +  {( - 4)}^{2}  } \\  \\  \\ \rm \longrightarrow \large  \sqrt{ 9+  16 } \\  \\  \\ \rm \longrightarrow \large  \sqrt{ 25 } \\  \\  \\ \rm \longrightarrow \large  \sqrt{ 5 \times 5}\\  \\  \\ \rm \longrightarrow \large  5 \: units

Therefore, distance between points (2, 7) and (‒1, 3) = 5 units

Answer :

Option H. 5 is correct


pandaXop: Perfect ☹️ (◍•ᴗ•◍)
Asterinn: Thank you @itzRaaz and @TheRyZen
ItzMysticalBoy: Great!!!!!
Anonymous: Nice !
Arfat333: Nice ✌
Anonymous: Superb, Excellent ✌
Anonymous: Niceeee ✨ ✌️✌️
Asterinn: Thanks !
Answered by ZAYNN
34

Answer:

Distance between two points (x₁ , y₁) and (x₂ , y₂) can be calculated by :

 \bf\dag\:\:\large\underline{\boxed{\sf\sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}}}

⠀⠀⠀⌬ (x₁ , y₁) = (2 , 7)

⠀⠀⠀⌬ (x₂ , y₂) = (-1 , 3)

\underline{\bigstar\:\textsf{According to the given Question :}}

:\Longrightarrow\sf Distance= \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}\\\\\\:\Longrightarrow\sf Distance=\sqrt{(-1-2)^2 + (3-7)^2}\\\\\\:\Longrightarrow\sf Distance=\sqrt{(-3)^2 + (-4)^2}\\\\\\:\Longrightarrow\sf Distance=\sqrt{9 + 16}\\\\\\:\Longrightarrow\sf Distance=\sqrt{25}\\\\\\:\Longrightarrow\sf Distance = 5

\therefore\:\underline{\textsf{Distance between following points is h) \textbf{5}}}.


Anonymous: Awesome !!!
Anonymous: Marvellous, Incredible ✌
Similar questions