what is the distance between the point (cosa,sina) and (sina,-cosa)
Answers
Answered by
13
by using the distance formula of two point. Give the name to those points.
A(cosa , sina) , B(sina , -cosa)
so
AB = √[(x2 - x1)^2 + (y2 - y1)^2]
AB = √[(sina - cosa)^2 + (-cosa - sina)^2]
AB = √[(sin^2a + cos^2a - 2.cosa.sina) + (cos^2a + sin^2a + 2.cosa.sina)]
cancel. -2cosa.sina and 2cosa.sina
AB = √[(sin^2a + cos^2a + sin^2a + cos^2a)]
AB = √(1+1) (sin^2a + cos^2a = 1)
AB = √(2) units
hope this helps
please mark as brainliest
dont forget to follow
A(cosa , sina) , B(sina , -cosa)
so
AB = √[(x2 - x1)^2 + (y2 - y1)^2]
AB = √[(sina - cosa)^2 + (-cosa - sina)^2]
AB = √[(sin^2a + cos^2a - 2.cosa.sina) + (cos^2a + sin^2a + 2.cosa.sina)]
cancel. -2cosa.sina and 2cosa.sina
AB = √[(sin^2a + cos^2a + sin^2a + cos^2a)]
AB = √(1+1) (sin^2a + cos^2a = 1)
AB = √(2) units
hope this helps
please mark as brainliest
dont forget to follow
Similar questions