Math, asked by 9229984, 4 months ago

What is the distance between the points (–4, –8) and (10, –8)?

Answers

Answered by Anonymous
19

Given

  • Two points (-4,-8) and (10,-8).

To find

  • Distance between the two given points.

Solution

  • Let the given points be A(-4,-8) and B(10,-8).

Now, we have to find the distance between A and B.

Using the distance formula

\: \: \: \: \: \: \: \: \star\bf\: \: \: {AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}

We have,

  • \sf{x_1 = -4\: and\: x_2 = 10}
  • \sf{y_1 = -8\: and\: y_2 = -8}

Finding the distance

\rm:\implies\: \: \: \: \: \: \: \: {AB = \sqrt{(10 + 4)^2 + (-8 + 8)^2}}

\rm:\implies\: \: \: \: \: \: \: \: {AB = \sqrt{(14)^2 + (0)^2}}

\rm:\implies\: \: \: \: \: \: \: \: {AB = \sqrt{196 + 0}}

\rm:\implies\: \: \: \: \: \: \: \: {AB = \sqrt{196}}

\bf:\implies\: \: \: \: \: \: \: \: {AB = 14}

Hence,

  • The distance between the given two points is 14 units.

Anonymous: Fantastic
Answered by Sen0rita
21

Given that,

  • There are two points (-4 , -8) and (10, -8)

⠀⠀

Let,

  • A(-4 , -8)
  • B(10 , -8)

Formula for finding distance between two points,

\boxed{\boxed{\bold\purple{\bigstar \: ab =  \sqrt{(x2 - x1 )^{2} + (y2 - y1) {}^{2}  } }}}

⠀⠀

Here,

  • x1 = -4
  • x2 = 10
  • y1 = -8
  • y2 = -8

⠀⠀

Put the values in the formula,

Now,

\rm:\implies \: AB =  \sqrt{(x2 - x1) {}^{2}  + (y2 - y1) {}^{2} }

⠀⠀⠀⠀⠀

\rm:\implies \: AB =  \sqrt{(10 -( - 4))  {}^{2}  + ( - 8  - ( - 8) ) {}^{2}  }

\rm:\implies \: AB =  \sqrt{(10 + 4) {}^{2} + ( - 8 + 8) {}^{2}  }

\rm:\implies \: AB =  \sqrt{(14) {}^{2} + (0) {}^{2}  }

\rm:\implies \: AB =  \sqrt{(14) {}^{2} }

\rm:\implies \: AB =  \sqrt{14 \times 14}

\rm:\implies \:  \boxed{\boxed{\bold\purple{AB = 14units}}}\bigstar

Hence, the distance between two points A and B is 14 units.


Anonymous: Nyce :D
Sen0rita: thnx :D
Anonymous: Sahi ja rhi h xD
Sen0rita: shukriya ✔︎ xD
Anonymous: bas bas xD
Anonymous: No extra comments plsss :)
Similar questions