Math, asked by bserena712, 2 months ago

What is the domain and range of the functions below;
A). y=2x²-3
B). f(x)= -3X²+1

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-(a)}}

Given function is

\rm :\longmapsto\:y =  {2x}^{2} - 3

Domain

\rm :\longmapsto\:Since \:  {2x}^{2} - 3 \: is \: a \: polynomial \: function

\rm :\implies\: {2x}^{2}  - 3 \: is \: defined \: for \: all \: real \: values \: of \: x.

\bf\implies \:Domain \: of \: y \:  =  \: x \:  \in \: R

Range

\rm :\longmapsto\:y =  {2x}^{2} - 3

\rm :\longmapsto\: {2x}^{2} = y + 3

\rm :\longmapsto\: {x}^{2} = \dfrac{y + 3}{2}

\rm :\longmapsto\:x =  \sqrt{\dfrac{y + 3}{2} }

\rm :\longmapsto\:x \: is \: defined \: if \: \dfrac{y + 3}{2} \geqslant 0

\rm :\longmapsto\:y + 3 \geqslant 0

\rm :\longmapsto\:y \geqslant  - 3

\bf\implies \:y \:  \in \: [- 3, \infty )

\large\underline{\sf{Solution-(b)}}

Given function is

\rm :\longmapsto\:f(x) = y =  -  {3x}^{2} + 1

Domain

\rm :\longmapsto\:Since \:  { - 3x}^{2} +  1\: is \: a \: polynomial \: function

\rm :\implies\: { - 3x}^{2}  + 1 \: is \: defined \: for \: all \: real \: values \: of \: x.

\bf\implies \:Domain \: of \: y \:  =  \: x \:  \in \: R

Range

\rm :\longmapsto\: y =  -  {3x}^{2} + 1

\rm :\longmapsto\: {3x}^{2} = 1 - y

\rm :\longmapsto\: {x}^{2} = \dfrac{1 - y}{3}

\rm :\longmapsto\:x =  \sqrt{\dfrac{1 - y}{3} }

\rm :\longmapsto\:x \: is \: defined \: if \: \dfrac{1 - y}{3} \geqslant 0

\rm :\longmapsto\:1 - y \geqslant 0

\rm :\longmapsto\: - y \geqslant  - 1

\rm :\longmapsto\:y \leqslant 1

\bf\implies \:y \:  \in \: ( -  \infty ,1]

Basic Concept Used :-

Domain :- Let f(x) be a function, then set of those values of x where f(x) is well defined is called domain.

Range :-

To find the range of f(x)

Step : - 1. Let y = f(x)

Step :- 2. Express x in terms of y, say x = g(y).

Step :- 3. Find the domain of g(y).

Step :- 4. This will be the range of f(x).

Similar questions