Math, asked by 96adarsh, 2 months ago

What is the Domain of the function f(x)=\sqrt{2-2x-2x^{2} }

Answers

Answered by shadowsabers03
4

We're asked to find the domain of the function,

\longrightarrow f(x)=\sqrt{2-2x-2x^2}

Here the restriction arises that the polynomial inside the square root must be non - negative, i.e.,

\longrightarrow 2-2x-2x^2\geq0

Dividing by 2,

\longrightarrow 1-x-x^2\geq0

Multiplying by -1, (note the symbol change)

\longrightarrow x^2+x-1\leq0\quad\quad\dots(1)

Let us find the roots of the equality, x^2+x-1=0.

\longrightarrow x=\dfrac{-1\pm\sqrt{1^2-4\times1\times-1}}{2\times1}

\longrightarrow x=\dfrac{-1\pm\sqrt5}{2}

Hence the solution to the inequality (1) is,

\longrightarrow\underline{\underline{x\in\left[\dfrac{-1-\sqrt5}{2},\ \dfrac{-1+\sqrt5}{2}\right]}}

or,

\longrightarrow\underline{\underline{x\in\left[-\dfrac{\sqrt5+1}{2},\ \dfrac{\sqrt5-1}{2}\right]}}

This is the domain of our function.

Similar questions