Science, asked by smansoor9016, 1 year ago

What is the ecliptic, and why is it tilted with respect to the celestial equator?

Answers

Answered by Rajeshkumare
0

Motion of Our Star the Sun - Astronomy Notes The apparent yearly path of the Sun through the stars is called the ecliptic. This circular path is tilted 23.5 degrees with respect to the celestial equator because the Earth's rotation axis is tilted by 23.5 degrees with respect to its orbital plane.



Now that you have your bearings, let's take a look at the position and motion of the closest star to us, the Sun. Every day the Sun rises in an easterly direction, reaches maximum height when it crosses the meridian at local noon, and sets in a westerly direction and it takes the Sun on average 24 hours to go from noon position to noon position the next day. The ``noon position'' is when the Sun is on the meridian on a given day. Our clocks are based on this solar day. The exact position on the horizon of the rising and setting Sun varies throughout the year (remember though, the celestial equator always intercepts the horizon at exactly East and exactly West). Also, the time of the sunrise and sunset changes throughout the year, very dramatically so if you live near the poles, so the solar day is measured from ``noon to noon''.

The Sun appears to drift eastward with respect to the stars (or lag behind the stars) over a year's time. It makes one full circuit of 360 degrees in 365.24 days (very close to 1 degree or twice its diameter per day). This drift eastward is now known to be caused by the motion of the Earth around the Sun in its orbit.



The apparent yearly path of the Sun through the stars is called the ecliptic. This circular path is tilted 23.5 degrees with respect to the celestial equator because the Earth's rotation axis is tilted by 23.5 degrees with respect to its orbital plane. Be sure to keep distinct in your mind the difference between the slow drift of the Sun along the ecliptic during the year and the fast motion of the rising and setting Sun during a day.



The ecliptic and celestial equator intersect at two points: the vernal (spring) equinox and autumnal (fall) equinox. The Sun crosses the celestial equator moving northward at the vernal equinox around March 21 and crosses the celestial equator moving southward at the autumnal equinox around September 22. When the Sun is on the celestial equator at the equinoxes, everybody on the Earth experiences 12 hours of daylight and 12 hours of night for those two days (hence, the name ``equinox'' for ``equal night''). The day of the vernal equinox marks the beginning of the three-month season of spring on our calendar and the day of the autumn equinox marks the beginning of the season of autumn (fall) on our calendar. On those two days of the year, the Sun will rise in the exact east direction, follow an arc right along the celestial equator and set in the exact west direction.



When the Sun is above the celestial equator during the seasons of spring and summer, you will have more than 12 hours of daylight. The Sun will rise in the northeast, follow a long, high arc north of the celestial equator, and set in the northwest. Where exactly it rises or sets and how long the Sun is above the horizon depends on the day of the year and the latitude of the observer. When the Sun is below the celestial equator during the seasons of autumn and winter, you will have less than 12 hours of daylight. The Sun will rise in the southeast, follow a short, low arc south of the celestial equator, and set in the southwest. The exact path it follows depends on the date and the observer's latitude.

Similar questions