Physics, asked by Anonymous, 7 months ago

What is the energy in joules, required to shift the electron of the hydrogen atom from the first Bohr orbit to the fifth Bohr orbit? What is the wavelength of the light emitted when the electron returns to the ground state? The ground state electron energy is -2.18 x 10^(-11) ergs.
✔Quality answer required✔​​

Answers

Answered by Itzunknownhuman
4

Explanation:

E₁ = - 2.18 × 10⁻¹¹ ergs

En = E₁ / n²

E₅ = (-2.18 × 10⁻¹¹) / 5²

E₅ = (-2.18 × 10⁻¹¹) / 25 = - 8.72 × 10⁻¹³

ΔE = E₅ - E₁

= - 8.72 × 10⁻¹³ - (- 2.18 × 10⁻¹¹) = 2.09828 × 10⁻¹¹ ergs.

1 ergs = 10⁻⁷ joules

Converting in joules :

2.09828 × 10⁻¹¹ × 10⁻⁷ = 2.09828 × 10⁻¹⁸ Joules

ΔE = hc/y

Y = wavelength

h = planks constant = 6.62 × 10⁻³⁴

c = speed of light = 3.0 × 10⁸

Doing the substitution we have :

2.09828 × 10⁻¹¹ = (6.62 × 10⁻³⁴ × 3 × 10⁸) / Y

Y = (6.62 × 10⁻³⁴ × 3 × 10⁸) / (2.09828 × 10⁻¹¹) = 9.465 × 10⁻¹⁵ cm

= 9.465 × 10⁻¹⁵ cm.

hope it helps you. Please make me brainlest and thank me too

Attachments:
Answered by IdyllicAurora
10

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Atomic - Radii related formulas have been used. We see that we are given the ground state electron energy of hydrogen. So firstly we can convert it into joules which is standard unit. Then we can find the required things by using formula.

Let's do it !!

_______________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{E_{n}\;=\;\bf{\dfrac{E_{1}}{n^{2}}}}}}

\\\;\boxed{\sf{\pink{\Delta\:E\;=\;\bf{E_{n_{1}}\;-\;E_{n_{2}}}}}}

\\\;\boxed{\sf{\pink{\Delta\:E\;=\;\bf{\dfrac{hc}{\lambda}}}}}

_______________________________________________

Solution :-

Given,

» Ground state electron energy = E₁ = -2.18 × 10¹¹ ergs

» Planck's Constant = h = 6.6 × 10³ J sec

» Speed of light = c = 3 × 10 m sec¹

  • Let the electron energy in fifth energy be E₅

  • Let the nth orbit of hydrogen atom be denoted by n.

We know that,

→ 1 Joule = 10 ergs

→ 1 erg = 10 Joules

→ -2.18 × 10⁻¹¹ ergs = -2.18 × 10⁻¹¹ × 10⁻⁷ Joules

→ -2.18 × 10⁻¹¹ ergs = -2.18 × 10⁻¹ Joules

For the value of E₅ ::

We know that,

\\\;\sf{:\rightarrow\;\;E_{n}\;=\;\bf{\dfrac{E_{1}}{n^{2}}}}

By replacing the value of n by 5 , we get

\\\;\sf{:\rightarrow\;\;E_{5}\;=\;\bf{\dfrac{-2.18\:\times\:10^{-18}}{5^{2}}}}

\\\;\sf{:\rightarrow\;\;\green{E_{5}\;=\;\bf{8.72\:\times\:10^{-20}}}}

_______________________________________________

~ For the value of energy absorbed to shift electron from First to Fifth Bohr Orbit ::

This is given as,

\\\;\sf{:\rightarrow\;\;\Delta\:E\;=\;\bf{E_{n_{1}}\;-\;E_{n_{2}}}}

  • Where, n₁ = First Orbit

  • n₂ = Fifth Orbit

  • E denotes the energy absorbed.

Then,

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{\dfrac{-2.18\:\times\:10^{-18}}{5^{2}}\;-\;\dfrac{-2.18\:\times\:10^{-18}}{1^{2}}}}

Taking -2.18 × 10⁻¹⁸ in common, we get

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{-2.18\:\times\:10^{-18}\bigg(\dfrac{1}{5^{2}}\;-\;\dfrac{1}{1^{2}}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{-2.18\:\times\:10^{-18}\bigg(\dfrac{1}{25}\;-\;\dfrac{1}{1}}\bigg)}

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{-2.18\:\times\:10^{-18}\bigg(\dfrac{1\;-\;25}{25}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{-2.18\:\times\:10^{-18}\bigg(\dfrac{-\;24}{25}\bigg)}}

Cancelling the -ve sign, we get

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{2.18\:\times\:10^{-18}\bigg(\dfrac{24}{25}\bigg)}}

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{2.18\:\times\:10^{-18}\:\times\:0.96}}

\\\;\sf{:\Longrightarrow\;\;\Delta\:E\;=\;\bf{\red{2.9\:\times\:10^{-18}\;\;Joules}}}

\\\;\underline{\boxed{\tt{Hence,\;\:energy\;\:absorbed\;=\;\bf{\purple{2.9\:\times\:10^{-18}\;\;Joules}}}}}

_______________________________________________

~ For the wavelength of light emitted when electron returns to ground state ::

We know that ,

\\\;\sf{:\rightarrow\;\;\Delta\:E\;=\;\bf{\dfrac{hc}{\lambda}}}

  • Here λ denotes the wavelength.

By applying values, we get

\\\;\sf{:\rightarrow\;\;2.9\:\times\:10^{-18}\;=\;\bf{\dfrac{(6.6\:\times\:10^{-34})\:\times\:(3\:\times\:10^{8})}{\lambda}}}

By replacing the values, we get

\\\;\sf{:\rightarrow\;\;\lambda\;=\;\bf{\dfrac{(6.6\:\times\:10^{-34})\:\times\:(3\:\times\:10^{8})}{2.9\:\times\:10^{-18}}}}

\\\;\sf{:\rightarrow\;\;\lambda\;=\;\bf{956\;\times\;10^{-7}\;\;m}}

\\\;\sf{:\rightarrow\;\;\lambda\;=\;\bf{\orange{956\;\times\;10^{-7}\;\;m}}}

\\\;\underline{\boxed{\tt{Hence,\;\:wavelength\;\:of\;\:light\;\:emitted\;=\;\bf{\purple{956\;\times\;10^{-7}\;\;m}}}}}

_______________________________________________

More formulas to know :-

\\\;\sf{\leadsto\;\;\nu\;=\;\dfrac{\Delta\;E}{h}}

\\\;\sf{\leadsto\;\;E_{n}\;=\;-2.18\:\times\:10^{-18}\bigg(\dfrac{Z^{2}}{n^{2}}\bigg)J}

\\\;\sf{\leadsto\;\;\lambda\;=\;\dfrac{h}{mv}}

\;\sf{\leadsto\;\;\lambda\;=\;\dfrac{h}{p}}

\\\;\sf{\leadsto\;\;E_{n}\;=\;-\:R_{H}\bigg(\dfrac{1}{n^{2}}\bigg)}

Similar questions