Computer Science, asked by singhnidhi23121996, 11 months ago

what is the equivalent 2s complement representation for -15 in 16 bit hexadecimal representation​

Answers

Answered by pulakmath007
75

\displaystyle\huge\red{\underline{\underline{Solution}}}

PROCESS

STEP 1 : Take the given negative value

STEP 2 : Make it positive

STEP 3 : Convert it into 16 bit Binary Value

STEP 4 : Negate the value

STEP 5 : Add 1 to the obtained value

STEP : 6 Convert it in Hexadecimal

TO REMEMBER

In Hexadecimal

A = 10 , B = 11 , C =12 , D= 13 , E = 14 , F= 15

TO DETERMINE

The equivalent 2s complement representation for -15 in 16 bit hexadecimal representation

EVALUATION

STEP 1 : The given value is - 15

STEP 2 : Positive value of - 15 is 15

STEP 3 :

15 = 2 \times 7 + 1

7 = 2 \times 3 + 1

3 = 2 \times 1 + 1

1 = 2 \times0  + 1

In 16 bit Binary Value 15 can be written as

 \sf{ 0000 \:  \: 0000 \:  \: 0000 \:  \: 1111\: }

STEP 4 : Negating

 \sf{ 0000 \:  \: 0000 \:  \: 0000 \:  \: 1111\: } \:  \: we \: get

 \sf{ \red{ 1111} \:  \: \green{ 1111} \:  \:  \pink{1111} \:  \: 0000\: }

STEP 5 : Adding 1 to the obtained value

 \sf{ \red{ 1111} \:  \: \green{ 1111} \:  \:  \pink{1111} \:  \: 0000\: } \: we \: get

 \sf{ \red{ 1111} \:  \: \green{ 1111} \:  \:  \pink{1111} \:  \: 0001\: }

STEP : 6 Convert it in Hexadecimal we get

 \sf{ \red{ | 1 \times  {2}^{3}  + 1 \times  {2}^{2}  + 1 \times  {2}^{1 }  + 1 \times  {2}^{0} | } \:  \: \green{ | 1 \times  {2}^{3}  + 1 \times  {2}^{2}  + 1 \times  {2}^{1 }  + 1 \times  {2}^{0} |} \:  \:  \pink{| 1 \times  {2}^{3}  + 1 \times  {2}^{2}  + 1 \times  {2}^{1 }  + 1 \times  {2}^{0} |} \:  \: | 0 \times  {2}^{3}  + 0 \times  {2}^{2}  + 0 \times  {2}^{1 }  + 1 \times  {2}^{0} |\: }

 =  \sf{ \red{ | 15 \: | } \:  \: \green{ | 15 |} \:  \:  \pink{| 15 |} \:  \: | 1 |\: }

 =  \sf{ FFF1\: }

RESULT

SO the required answer is

 \boxed{ \sf{ \:FFF1  \: }}

Similar questions