Physics, asked by devendrapandey7806, 4 months ago

What is the equivalent resistance between points P and Q in the following network?
With full explanation. the explained answer will receive the tag of brainliaist.

Attachments:

Answers

Answered by InfiniteSoul
49

\bigstar\:{\underline{\sf Step \: 1 \::}}\\

⠀⠀⠀⠀

\sf Refer\: to\: the\: attachment

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Step \: 2 \::}}\\

⠀⠀⠀⠀

\sf \implies R_1 \: and R_2\: are\: connected\: in \: series

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{R' = R_1 + R_2 }}}}\\

⠀⠀⠀⠀

:\implies\sf R' = 2Ω  + 2Ω\\

⠀⠀⠀⠀

:\implies\sf R' = 4Ω \\

⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{{R'= 4Ω }}}}}\;\bigstar\\

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Step \: 3 \::}}\\

⠀⠀⠀⠀

\sf \implies R' \: and R_5\:  are \: connected\:  in \: parallel

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{\dfrac{1}{R''}  = \dfrac{1}{R'} + \dfrac{1}{R_5} }}}}\\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R''} = \dfrac{1}{4} + \dfrac{1}{4} \\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R''} = \dfrac{2}{4} \\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R''} = \dfrac{1}{2} \\

⠀⠀⠀⠀ ⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{{R''= 2Ω }}}}}\;\bigstar\\

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Step \: 4 \::}}\\

⠀⠀⠀⠀

\sf \implies R''\: and R_6\: are\: connected\: in \: series

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{R''' = R'' + R_6 }}}}\\

⠀⠀⠀⠀

:\implies\sf R''' = 2Ω  + 2Ω \\

⠀⠀⠀⠀

:\implies\sf R''' = 4Ω \\

⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{{R'''= 4Ω }}}}}\;\bigstar\\

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Step \: 5 \::}}\\

⠀⠀⠀⠀

\sf \implies R''' \: and \: R_7\:  are \: connected\:  \: in\: parallel

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{\dfrac{1}{R''''}  = \dfrac{1}{R'''} + \dfrac{1}{R_7} }}}}\\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R''''} = \dfrac{1}{4} + \dfrac{1}{4} \\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R''''} = \dfrac{2}{4} \\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R''''} = \dfrac{1}{2} \\

⠀⠀⠀⠀ ⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{{R''''= 2Ω }}}}}\;\bigstar\\

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Step \: 6 \::}}\\

⠀⠀⠀⠀

\sf \implies R''''\: and R_4\: are\: connected\: in \: series

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{R''''' = R'''' + R_4 }}}}\\

⠀⠀⠀⠀

:\implies\sf R''''' = 2Ω  + 2Ω \\

⠀⠀⠀⠀

:\implies\sf R''''' = 4Ω \\

⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{{R'''''= 4Ω }}}}}\;\bigstar\\

⠀⠀⠀⠀

\bigstar\:{\underline{\sf Step \: 7 \::}}\\

⠀⠀⠀⠀

\sf \implies R'''''\: and\: R_3 \: are \: connected\: in\: parallel

⠀⠀⠀⠀

\star\;{\boxed{\sf{\pink{\dfrac{1}{R}  = \dfrac{1}{R'''''} + \dfrac{1}{R_3} }}}}\\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R} = \dfrac{1}{4} + \dfrac{1}{4} \\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R} = \dfrac{2}{4} \\

⠀⠀⠀⠀

:\implies\sf \dfrac{1}{R} = \dfrac{1}{2} \\

⠀⠀⠀⠀ ⠀⠀⠀⠀

 :\implies{\underline{\boxed{\frak{{R= 2Ω }}}}}\;\bigstar\\

⠀⠀⠀⠀

\therefore\:{\underline{\sf{ Total\: resistance \: across \: P\: and\: Q \: \bf{ 2Ω}}}}

Attachments:
Answered by BrainlyKilIer
53

 \\ {\bf{To\: Find\::}} \\

  • The equivalent resistance between points P & Q in the given circuit .

 \\ {\bf{Solution\::}} \\

➣ See the attachment diagram for numbering of resistors.

Case - 1 :

✯ 1st & 2nd resistor are connected in series.

Thus,

\tt{R_{eq_1}\:=\:2\Omega\:+\:2\Omega\:} \\

\bf{R_{eq_1}\:=\:4\Omega\:}

Case - 2 :

✯ The equivalent resistance of 1st & 2nd resistor is connected parallel to 3rd resistor.

Thus,

\tt{\dfrac{1}{R_{eq_2}}\:=\:\dfrac{1}{4\Omega}\:+\:\dfrac{1}{4\Omega}\:} \\

\tt{\dfrac{1}{R_{eq_2}}\:=\:\dfrac{2}{4}\Omega\:} \\

\tt{R_{eq_2}\:=\:\dfrac{4}{2}\Omega\:} \\

\bf{R_{eq_2}\:=\:2\Omega\:}

Case - 3 :

\rm{R_{eq_2}} & 4th resistor are connected in series.

Thus,

\tt{R_{eq_3}\:=\:2\Omega\:+\:2\Omega\:} \\

\bf{R_{eq_3}\:=\:4\Omega\:}

Case - 4 :

\rm{R_{eq_3}} & 5th resistor are connected in parallel.

Thus,

\tt{\dfrac{1}{R_{eq_4}}\:=\:\dfrac{1}{4\Omega}\:+\:\dfrac{1}{4\Omega}\:} \\

\tt{\dfrac{1}{R_{eq_4}}\:=\:\dfrac{2}{4}\Omega\:} \\

\tt{R_{eq_4}\:=\:\dfrac{4}{2}\Omega\:} \\

\bf{R_{eq_4}\:=\:2\Omega\:}

Case - 5 :

\rm{R_{eq_4}} & 6th resistor are connected in series.

Thus,

\tt{R_{eq_5}\:=\:2\Omega\:+\:2\Omega\:} \\

\bf{R_{eq_5}\:=\:4\Omega\:}

Case - 6 :

\rm{R_{eq_5}} & 7th resistor are connected in parallel.

Thus,

\tt{\dfrac{1}{R_{eq_6}}\:=\:\dfrac{1}{4\Omega}\:+\:\dfrac{1}{4\Omega}\:} \\

\tt{\dfrac{1}{R_{eq_6}}\:=\:\dfrac{2}{4}\Omega\:} \\

\tt{R_{eq_6}\:=\:\dfrac{4}{2}\Omega\:} \\

\bf\pink{R_{eq_6}\:=\:2\Omega\:}

∴ The equivalent resistance between P & Q is 2 Ω.

Attachments:
Similar questions