English, asked by irenecalderon39, 9 months ago

What is the exact value of tan 75°?

1−3√31+3√3


1+3√31−3√3


1+3√1−3√


1−3√1+3√

Answers

Answered by devanshkhuranapcj8v0
0

Answer:

√3+1

------------

√3-1

Explanation:

Tan (75) = Tan (45+30)

Tan 45 + Tan3O

-----------------------

1- Tan45 Tan30

√3+1

---------

√3 -1

Answered by ShresthaTheMetalGuy
1

Answer:

tan(75°) can be writte as:

tan(30°+45°)

Now, as:

 \tan(x + y) =  \frac{ \tan(x) +  \tan(y)  }{1 -  \tan(x). \tan(y)  }

 \tan(75°)  =  \frac{ \tan(30°)  +  \tan(45°) }{1 -  \tan(30°). \tan(45°)  }

\tan(75°)  =  \frac{ \frac{1}{ \sqrt{ 3 } } + 1 }{1 - (1)( \frac{1}{ \sqrt{3} }) }

⇒ \tan(75°)  =   \frac{1 +  \sqrt{3} }{ \sqrt{3} - 1 }

On Rationalising the denominator:

⇒ \tan(75°)  =2 +  \sqrt{3}

Similar questions