Math, asked by 400005425, 6 days ago

WHAT IS THE EXPLANATION ​

Attachments:

Answers

Answered by XxitzZBrainlyStarxX
17

Question:-

7. If a + b + c = 0, then write the value of \sf \frac{a {}^{2} }{bc}  +  \frac{b {}^{2} }{ca}  +  \frac{c {}^{2} }{ ab} .

Given:-

  • a + b + c = 0.

To Find:-

The value of  \sf \frac{a {}^{2} }{bc}  +  \frac{b {}^{2} }{ca}  +  \frac{c {}^{2} }{ab} .

Solution:-

We know that,

{ \boxed{ {{ \boxed{\sf \large \color{red} a {}^{3}  + b {}^{3} + c {}^{3}  = (a + b + c)(a {}^{2} + b {}^{2}  + c  {}^{2}  - ab - bc - ca) + 3abc. }}}  }}

If a + b + c = 0 then, a³ + b³ + c³ = 3abc.

 \sf \large =  \frac{3{{ \cancel{abc}}}}{{{ \cancel{abc}}}}  \\  \\  \\  \sf \large = 3. \:  \:  \:  \:  \:  \:  \:

Answer:-

{ \boxed{ \sf \large \blue{  \frac{a {}^{2} }{ bc } +  \frac{b {}^{2} }{ca}   +   \frac{c {}^{2} }{ab} = 3. }}}

Hope you have satisfied.

Answered by Anonymous
47

{ \underline{ \large{ \sf{Solution : }}}}

Given Expression,

 \displaystyle \rm{ \frac{a^2}{bc}+ \frac{b^2}{ca}  +  \frac{ c^2}{ab}}

When,

  • a+b+c=0

Now,

 {\implies\displaystyle \rm{ \frac{a^3+b^3+c^3}{abc }}}

 \therefore \boxed{\displaystyle \rm{a + b + c = 0}}

Then,

{ \implies\displaystyle \rm{a^3+b^3+c^3=3abc}}

 {\implies\displaystyle \rm{ \frac{a^3+b^3+c^3}{abc }}}

 \implies\displaystyle \rm{\cancel \frac{3abc}{abc} }

 \implies\displaystyle \rm{  = 03 }

Therefore,

{ \color{pink}{\displaystyle \rm{ \frac{a^2}{bc}+ \frac{b^2}{ca}  +  \frac{ c^2}{ab} = 3}}}

____________________________

Additional Information

\begin{gathered}\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{ \:Algrbraic\:Identities }}}} \\ \\ \sf{(a + b)² = a² + 2ab + b² }\\  \\   \sf{(a - b)² = a² - 2ab + b²} \\  \\\sf{a²-b² = (a + b)(a - b) } \\  \\  \sf{(a + b + c)² = a² + b² + c² + 2(ab + bc +ac)  }\\  \\ \sf{ (a + b)³ = a³ + 3ab(a + b) + b³ }\\  \\  \sf{(a - b)³ = a³-3ab(a - b) - b³} \\  \\  \sf{a³ + b {}^{3} = (a + b)(a²- ab + b²)} \\  \\  \sf{ 3 a³-b³ = (a - b)(a² + ab + b²) }\\  \\  \sf{(x + a)(x + b) = x² + (a + b)x +ab }\\  \\  \sf{(x + a)(x - b) = x² + (a - b)x - ab} \\  \\  \sf{(x-a)(x + b) = x² - (a - b)x - ab }\\  \\   \sf{(x-a)(x - b) = x² - (a + b)x+ ab} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions