Math, asked by vrindaatri, 9 months ago

What is the final answer of this ?

Attachments:

Answers

Answered by ThinkingBoy
1

y = e^{\sqrt{\frac{1-x}{1+x} } }

logy = \sqrt{\frac{1-x}{1+x} }

(logy)^2 = \frac{1-x}{1+x}

Differentiating with respect to x

2logy*\frac{1}{y}*\frac{dy}{dx} = \frac{-(1+x) - (1-x)}{(1+x)^2}

2logy*\frac{1}{y}*\frac{dy}{dx} = \frac{-2}{(1+x)^2}

\frac{dy}{dx} = \frac{-y}{logy(1+x)^2}

\frac{dy}{dx} = \frac{-e^{\sqrt{\frac{1-x}{1+x} }} }{(1+x)^2\sqrt{\frac{1-x}{1+x} }}

\large\black\boxed{\frac{dy}{dx} = \frac{-e^{\sqrt{\frac{1-x}{1+x} }} }{(1+x)\sqrt{1-x^2 }}}

Similar questions