Chemistry, asked by dipanshuagarwal1502, 10 months ago

What is the final temperature of 0.10 mole
monoatomic ideal gas that performs 75 cal of
work adiabatically, if the initial temperature is
227°C (use R = 2 cal K-? mol-1)
(1) 100°C (2) 250°C (3) 150°C (4) 210°C​

Answers

Answered by shadowsabers03
7

Correct Question:-

What is the final temperature of \sf{0.10\ mol}  monoatomic ideal gas that performs \sf{75\ cal} work adiabatically, if the initial temperature is  \sf{227^oC\,?} (use \sf{R=2\ cal\,K^{-1}\,mol^{-1})}

\sf{(1)\ 100\ K}

\sf{(2)\ 250\ K}

\sf{(3)\ 150\ K}

\sf{(4)\ 210\ K}

Solution:-

Work done by an ideal gas in an adiabatic process is given by,

\longrightarrow\sf{W=\dfrac{nR(T_2-T_1)}{1-\gamma}}

where,

  • \sf{n=} no. of moles

  • \sf{R=2\ cal\,K^{-1}\,mol^{-1}}

  • \sf{T_1=} initial temperature

  • \sf{T_2=} final temperature

  • \sf{\gamma=} heat capacity ratio, i.e., \sf{\dfrac{C_P}{C_V}.}

Here,

\longrightarrow\sf{W=75\ cal}

\longrightarrow\sf{n=0.1\ mol}

\longrightarrow\sf{T_1=227^oC=500\ K}

Since the ideal gas is monoatomic,

\longrightarrow\sf{\gamma=\dfrac{5}{3}}

Then,

\longrightarrow\sf{W=\dfrac{nR(T_2-T_1)}{1-\gamma}}

\longrightarrow\sf{W(1-\gamma)=nR(T_2-T_1)}

\longrightarrow\sf{T_2-T_1=\dfrac{W(1-\gamma)}{nR}}

\longrightarrow\sf{T_2=T_1+\dfrac{W(1-\gamma)}{nR}}

Substituting values for each in RHS,

\longrightarrow\sf{T_2=500+\dfrac{75\left(1-\dfrac{5}{3}\right)}{0.1\times2}}

\longrightarrow\sf{\underline{\underline{T_2=250\ K}}}

Hence the final temperature is \bf{250\ K.}

Similar questions