Math, asked by akankshukabir5358, 9 months ago

What is the first term of A.P. if common difference is -5 and 18th term is -68.​

Answers

Answered by mrmithleshkr1234
0

Answer:

find a18= using formula

an=a+ (n-1)d

Answered by SarcasticL0ve
3

GivEn:

  • Common difference, d = -5

  • \sf 18^{th} term of AP, \sf a_{18} = -68

⠀⠀⠀⠀⠀⠀⠀

To find:

  • First term of AP?

⠀⠀⠀⠀⠀⠀⠀

SoluTion:

\dag\;{\underline{\frak{Using\; Arithmetic\; progression\;formula,}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{ a_{n} = a + (n - 1)d}}}}

⠀⠀⠀⠀⠀⠀⠀

{\frak{Here}} \begin{cases} & \text{d = -5 }  \\ & \text{ $ \sf a_{18}$ = -68 } \\ & \text{n = 18} \end{cases}

⠀⠀⠀⠀⠀

\dag\;{\underline{\frak{Putting\;values,}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf a_{18} = a + (18 - 1)(-5)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf - 68 = a + (18 - 1)(-5)

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf - 68 = a + 17 \times -5

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf - 68 = a - 85

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf a = -68 + 85

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{a = 17}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Hence, first term of AP is 17.

━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\underline{\underline{\bigstar \: \bf\:Formula\:Related\:to\:AP\:\bigstar}}}

⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;The\; n^{th}\;term\;of\;an\;AP\; = \; \red{a_n + (n - 1)d}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Sum\;of\;n\;term\;of\;an\;AP\; = \; \purple{S_n = \dfrac{n}{2} \bigg\lgroup\sf 2a + (n - 1)d \bigg\rgroup}

⠀⠀⠀⠀⠀⠀⠀

\sf (iii)\;Sum\;of\;all\;terms\;of\;AP\;having\;last\:term\;as\;'l'\; = \; \pink{ \dfrac{n}{2}(a + l)}

Similar questions