Physics, asked by sashikanth814264, 11 months ago

what is the focal length of double cancave lens kept in air with two sphercial surfaces of radii r1=30 and r2=60 cm take refractive index of lens n=15​

Answers

Answered by Anonymous
3

\large\underline{\bigstar \: \: {\sf Correct \: Question - }}

what is the focal length of double cancave lens kept in air with two sphercial surfaces of radii {\sf R_1}=30 and {\sf R_2}=60 cm take refractive index of lens μ= 1.5

\large\underline{\bigstar \: \: {\sf Given-}}

In double concave lens

  • Radii {\sf R_1=-30\:cm\:R_2=+60cm}
  • Refractive index ( μ ) = 1.5

Sign Conversion

{\sf R_1} is left side thats why is negative (-)

{\sf R_2} is right side thats why is positive (+)

\large\underline{\bigstar \: \: {\sf To \: Find -}}

  • Focal Lenght (f)

\large\underline{\bigstar \: \: {\sf Formula \: Used -}}

\implies\underline{\boxed{\sf \dfrac{1}{f}=(\mu-1)\left[\dfrac{1}{R_1}-\dfrac{1}{R_2}\right]}}

\large\underline{\bigstar \: \: {\sf Solution-}}

\implies{\sf (1.5-1)\left[\dfrac{1}{-30}-\left(\dfrac{1}{+60}\right)\right] }

\implies{\sf 0.5\left[\dfrac{1}{-30}-\dfrac{1}{60}\right]}

\implies{\sf 0.5\left[\dfrac{60-(-30)}{-30×60}\right]}

\implies{\sf 0.5\times\dfrac{90}{-1800}}

\implies{\sf 0.5\times (-0.05) }

\implies{\sf \dfrac{1}{f}=-0.025\:cm}

\implies{\sf f=\dfrac{1}{-0.025} }

\implies{\bf f=-40\:cm}

\large\underline{\bigstar \: \: {\sf Answer-}}

Focal Lenght of double concave lens is {\bf -40\:cm}

Attachments:
Similar questions