Math, asked by louise51351, 6 months ago

What is the following product? Assume y greater-than-or-equal-to 0

3 StartRoot 10 EndRoot (y squared StartRoot 4 EndRoot + StartRoot 8 y EndRoot)

Answers

Answered by pulakmath007
8

SOLUTION

TO CHOOSE THE CORRECT OPTION

What is the following product? Assume y ≥ 0

  \sf{3 \sqrt{10}( {y}^{2} \sqrt{4}   +  \sqrt{8y} )  = }

  \sf{a. \:  \:  \: 6 {y}^{2} \sqrt{10} + 12 \sqrt{5y}  }

  \sf{b. \:  \:  \: 6  \sqrt{10} + 12 \sqrt{5y}  }

  \sf{c. \:  \:  \: 6 {y}^{2} \sqrt{10} + 4 \sqrt{5y}  }

  \sf{d. \:  \:  \: 3 {y}^{2} \sqrt{10} + 12 \sqrt{5y}  }

EVALUATION

Here the given expression is

  \sf{3 \sqrt{10}( {y}^{2} \sqrt{4}   +  \sqrt{8y} )}

We simplify it as below

  \sf{3 \sqrt{10}( {y}^{2} \sqrt{4}   +  \sqrt{8y} )}

=   \sf{3 \sqrt{10}( {y}^{2} \sqrt{2 \times 2}   +  \sqrt{2 \times 2 \times 2 \times y} )}

  \sf{ = 3 \sqrt{10}(2 {y}^{2} + 2 \sqrt{2 \times y} )}

  \sf{ = 3 \sqrt{10}(2 {y}^{2} + 2 \sqrt{2 y} )}

  \sf{ = 3 \sqrt{10} \times 2 {y}^{2} +3 \sqrt{10} \times  2 \sqrt{2 y} }

  \sf{ = 6 \sqrt{10}  {y}^{2} +3  \times  2 \sqrt{10 \times 2 \times  y} }

  \sf{ = 6 \sqrt{10}   \: {y}^{2} +3  \times  2 \sqrt{2 \times 5 \times 2 \times  y} }

  \sf{ = 6 \sqrt{10}   \: {y}^{2} +3  \times  2  \times 2\sqrt{  5  \times  y} }

  \sf{ = 6 \sqrt{10}   \: {y}^{2} +12\sqrt{  5y} }

 \sf{ =  6 {y}^{2} \sqrt{10} + 12 \sqrt{5y}  }

FINAL ANSWER

Hence the correct option is

 \sf{a. \:  \:  \: 6 {y}^{2} \sqrt{10} + 12 \sqrt{5y}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Attachments:
Similar questions