Science, asked by kancansngfb, 1 year ago

What is the formula algebra​

Answers

Answered by priyanshuranjan1204
4

Important Formulas in Algebra

Here is a list of Algebraic formulas –

a2 – b2 = (a – b)(a + b)

(a+b)2 = a2 + 2ab + b2

a2 + b2 = (a – b)2 + 2ab

(a – b)2 = a2 – 2ab + b2

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

(a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc

(a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)

(a – b)3 = a3 – 3a2b + 3ab2 – b3

a3 – b3 = (a – b)(a2 + ab + b2)

a3 + b3 = (a + b)(a2 – ab + b2)

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a – b)3 = a3 – 3a2b + 3ab2 – b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)

(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)

a4 – b4 = (a – b)(a + b)(a2 + b2)

a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

If n is a natural number, an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)

If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)

If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)

(a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….

Laws of Exponents (am)(an) = am+n (ab)m = ambm (am)n = amn

Fractional Exponents a0 = 1

a

m

a

n

=

a

m−n

a

m

=

1

a

−m

a

−m

=

1

a

m

Roots of Quadratic Equation

For a quadratic equation ax2 + bx + c where a ≠ 0, the roots will be given by the equation as

−b±

b

2

−4ac

2a

Δ = b2 − 4ac is called the discrimination.

For real and distinct roots, Δ > 0

For real and coincident roots, Δ = 0

For non-real roots, Δ < 0

If α and β are the two roots of the equation ax2 + bx + c then, α + β = (-b / a) and α × β = (c / a).

If the roots of a quadratic equation are α and β, the equation will be (x − α)(x − β) = 0

Factorials

n! = (1).(2).(3)…..(n − 1).n

n! = n(n − 1)! = n(n − 1)(n − 2)! = ….

0! = 1

(a+b

)

n

=

a

n

+n

a

n−1

b

+

n(n−1)

2!

a

n−2

b

2

+

n(n−1)(n−2)

3!

a

n−3

b

3

+….+

b

n

,

where,n>1

Answered by gaurigpk
0

Answer:

Ello______❣‼

\huge\boxed{Answer}

Answer

Here are the basic steps to follow to simplify an algebraic expression:

➡remove parentheses by multiplying factors.

➡use exponent rules to remove parentheses in terms with exponents.

➡combine like terms by adding coefficients.

➡combine the constants.

Similar questions