What is the formula for
TanA - TanB - TanC
Answers
Answered by
2
TanA - TanB - TanC
= tanA - (tanB + tanC)
=tanA - (tan(b + c)(1 - tanbtanc))
= sinA/cosA - (sin(b + c)/cos(b + c)((cosbcosc - sinasinb)/cosbcosc))
= sinA/cosA - (sin(b + c)/cos(b + c)((cos(b+c))/cosbcosc))
= sinA/cosA - sin(b + c)/(cosbcosc)
= {sinacosbcosc - sin(b +c)cosa}/cosacosbcosc
= tanA - (tanB + tanC)
=tanA - (tan(b + c)(1 - tanbtanc))
= sinA/cosA - (sin(b + c)/cos(b + c)((cosbcosc - sinasinb)/cosbcosc))
= sinA/cosA - (sin(b + c)/cos(b + c)((cos(b+c))/cosbcosc))
= sinA/cosA - sin(b + c)/(cosbcosc)
= {sinacosbcosc - sin(b +c)cosa}/cosacosbcosc
Answered by
0
Similar questions