what is the formula of (a-b)³.
Answers
Answer:
The formula is (a-b)³=a³-3a²b+3ab²-b³. You convert it to (a-b)³=a³-3ab(a-b)-b³ for an illustration. You take the drawing of the formula (a+b)³=a³+3a²b+3ab²+b³ from above and replace a by the difference a-b. Then the edges are (a-b)+b with different combinations (on the left).
= (a-b)(a-b)²
= (a-b)(a²-2ab+b²)
= a(a²-2ab+b²)-b(a²-2ab+b²)
= a³-2a²b+ab²-a²b+2ab²-b³
= a³-3a²b+3ab²-b³
Or
= a³-b³-3a²b+3ab²
= a³-b³-3ab(a-b)
Therefore,
(a-b)³ = a³-3a²b+3ab²-b³
Or
(a-b)³ = a³-b³-3ab(a-b)
•••
Step-by-step explanation:
Identity :-
(a-b)³ = a³ - 3a²b + 3ab² - b³
(a-b)³ = a³ - 3ab(a-b) - b³
Examples :-
Let's verify this identity with some examples :
(4-2)³
a = 4 and b = 2
(4-2)³ = 4³ - 3(4)(2)(4-2) - 2³
(2)³ = 64 - 48 - 8
(2)³ = 64 - 56
(2)³ = 8
LHS = RHS
Hence verified.
(1-2)³
where a = 1 and b = 2
(1-2)³ = (1)³ - 3(1)(2)(1-2) - (2)³
(-1)³ = 1 - 6(-1) - 8
(-1)³ = 1 + 6 - 8
(-1)³ = 1 - 2
(-1)³ = (-1)
LHS = RHS
Hence verified.
Let's solve with variables in the question :
- (3a-b)³
- (7x-4)³
- (12pq-3q)
(3a-b)³
a = 3a and b = b
(3a-b)³ = (3a)³ - 3(3a)(b)(3a-b) - (b)³
(3a-b)³ = (3a)³ - 9ab(3a-b) - (b)³
(3a-b)³ = 27a³ - 27a²b + 9ab² - b³
(7x-4)³
a = 7x and b = 4
(7x-4)³ = (7x)³ - 3(7x)(4)(7x-4) - (4)³
(7x-4)³ = (7x)³ - 84x(7x-4) - (4)³
(7x-4)³ = 343x³ - 588x² + 336x - 64
(12pq-3q)³
a = 12pq and b = 3q
(12pq-3q)³ = (12pq)³ - 3(12pq)(3q)(12pq-3q) - (3q)³
(12pq-3q)³ = (12pq)³ - 108pq²(12pq-3q) - (3q)³
(12pq-3q)³ = 1728p³q³ - 1296pq³ + 324pq³ - 27q³
Some more identities :-
(a+b)³ = a³ + 3a²b + 3ab² + b³
a³+b³ = (a+b)(a²-ab+b²)
a³-b³ = (a-b)(a²+ab+b²)
a³+b³+c³-3abc = (a+b+c)(a²+b²+c²-ab-bc-ca)
Conditional identity :-
if a+b+c = 0,
a³+b³+c³ = 3abc