What is the formula of (a-b-c)2 ?
Answers
Answered by
330
Hi ,
*****************************************
We know the algebraic identity,
( x + y + z )²
= x² + y² + z² + 2xy + 2yz + 2zx
*******************************************
Now ,
( a - b - c )²
= [ a² + ( - b )² + ( -c )² ]²
= a²+(-b)²+(-c)²+2a(-b)+2(-b)(-c)+2(-c)a
= a² + b² + c² - 2ab + 2bc - 2ca
I hope this helps you.
: )
*****************************************
We know the algebraic identity,
( x + y + z )²
= x² + y² + z² + 2xy + 2yz + 2zx
*******************************************
Now ,
( a - b - c )²
= [ a² + ( - b )² + ( -c )² ]²
= a²+(-b)²+(-c)²+2a(-b)+2(-b)(-c)+2(-c)a
= a² + b² + c² - 2ab + 2bc - 2ca
I hope this helps you.
: )
Answered by
44
Answer:
(a - b - c)² = a² + b² + c² - 2ab + 2bc - 2ac
Step-by-step explanation:
(a - b - c)²
= (a - b - c)(a - b - c)
= a² - ab - ac - ab + b² + bc - ac + bc + c²
= a² + b² + c² - 2ab + 2bc - 2ac
Similarly, the formula of (a ± b ± c)² is in the form of a² + b² + c² ± 2ab ± 2bc ± 2ac. As you can see, a x -b = -ab, -b x -c = bc, and a x -c = -ac. Then just plug it in to the above form to get
a² + b² + c² - 2ab + 2bc - 2ac.
(a - b - c)² = a² + b² + c² - 2ab + 2bc - 2ac
That is the faster way.
Hope this helps!
Similar questions