What is the formula of (a+b+c+d)^2?
Answers
Answered by
0
It's very simple to find the formula for (a+b+c+d)^2.
Consider (a+b) be ‘x’ and(c+d) be ‘y’.
Then the above problem'll resolve as-
(x+y)^2
Now, apply the formula for (a+b)^2-
x^2 + y^2 + 2xy.
Now put the values of ‘x’ ( a+b) & ‘y’ (c+d)
(a+b)^2 + (c+d)^2 + 2 (a+b)(c+d)
Now, again apply the formula of (a+b)^2-
a^2 +b^2 + 2ab + c^2 + d^2 + 2cd + 2 (a+b)(c+d).
So, the formula for (a+b+c+d)^2 is-
a^2 + b^2 + 2ab + c^2 + d^2 + 2cd + 2(a+b)(c+d).
Similar questions