Math, asked by aha8tty7surgavlingul, 1 year ago

What is the formula of (a-b) whole cube?

Answers

Answered by mysticd
34

Answer:

(a-b)³ = -3a²b+3ab²-b³

Or

(a-b)³ = -b³-3ab(a-b)

Explanation:

(a-b)³

= (a-b)(a-b)²

= (a-b)( -2ab+)

/* we know the algebraic identity:

(a-b)² = a²-2ab+b² */

= a(-2ab+)-b(-2ab+)

= -2a²b+ab²-a²b+2ab²-b³

= - 3a²b + 3ab² -

Or

= -b³-3ab(a-b)

Therefore,

(a-b)³ = - 3a²b + 3ab² -

Or

(a-b)³ = a³ - b³ - 3ab(a-b)

••••

Answered by mindfulmaisel
11

The formula of (a-b)^{3} \text { is } \bold{\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)}.

To find:

Formula of (a-b)^{3}

Solution:

(a-b)^{3}

=(a-b)(a-b)(a-b)

=[a(a-b)-b(a-b)](a-b)

=\left(a^{2}-a b-b a+b^{2}\right)(a-b)

We know that ab = ba. Hence,

\begin{array}{l}{=\left(a^{2}-a b-a b+b^{2}\right)(a-b)} \\ \\ {=\left(a^{2}-2 a b+b^{2}\right)(a-b)}\end{array}

Multiplying two terms, we get

=\left[a^{2}(a-b)-2 a b(a-b)+b^{2}(a-b)\right]

=\left(a^{3}-a^{2} b-2 a^{2} b+2 a b^{2}+a b^{2}-b^{3}\right)

=\left(a^{3}-3 a^{2} b+3 a b^{2}-b^{3}\right)

Similar questions